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This paper introduces the Active Shadows algo-
rithm that produces low latency (under 200ms) and
high quality video object segmentation of a person,
occluding a computer-controlled display of any type
(LCD, projector, CRT, plasma,) in front of video cam-
era device. This algorithm sets up a causal video
feedback loop that can resolve ambiguous visual oc-
clusions by adaptively modifying the displayed image
in real-time. These real-time modifications to the dis-
play manifest themselves as if the camera were a vir-
tual light source and was casting o reverse shadow
onto the display. Active Shadows gives the same out-
put as a chromakey system except that the user is
physically interacting with the displayed image, in-
stead of a colored background. With this setup, the
system produces segmented video at approzimately
5 fps and seamlessly composites presentation slides
and segmented video of the speaker to create a multi-
layered video representations.

1 Introduction

Display technologies (LCDs, OLEDs, Plasma
Screens, and digital projectors) beyond cathode ray
tubes (CRTs) are becoming a ubiquitous part of our
living and working environments as they are driven
to be less bulky with larger display areas at cheaper
cost. When coupled with a camera, these display
technologies become opportunities for viewers to in-
teract with the displayed digital information.

In this paper, we will concentrate on a computer
vision solution for interaction that segments out oc-
cluding objects in front of the display within a camera
view, i.e. separates visual information of occluding
objects from the background [5]. This special case of
the video object segmentation problem [7] has four
conditions: 1) it happens in real-time, 2) the area of
interest is confined only to the front of the display, 3)
the solution controls both display and camera, and
4) one person at a time is interacting with the display.

The Active Shadows algorithm has four major ap-
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Figure 1: Active Shadows segmentation output over-
laid upon a presentation slide image. The gray image
represents a video layer of a person interacting with
the projected slide image.

plications: 1) inexpensively adding interactive capa-
bilities to wide range of display devices, 2) creating
rich media composition, 3) enabling real-time inter-
action with video and, by extension, a collaborative
rich media authoring space, and 4) the front-end fea-
ture extraction for a vision-based recognition system.

2 Setup

For this algorithm, there are two two system require-
ments, to be defined in this section: 1) the system
must have a causal video feedback loop and 2) the
system must know its camera-display pizel correspon-
dence.

First, we define the causal video feedback loop as a
special case of the video feedback loop [2]. To create
a generic video feedback loop, we must set up a feed-
back circuit of visual information within our system.
As shown in Figure 2, our system has three major
elements: 1) the visual input device (a digital cam-
era or webcam), 2) a visual output device (projector,
plasma display, CRT display, etc.) and 3) a computer
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Figure 2: The basic video feedback loop: From com-
puter to display, from display to camera, from camera
to computer and then back again.

that drives this display and takes in the digital im-
ages from the camera. To connect the visual output
to the visual input, we aim camera at the display.

We define a causal video feedback loop as a video
feedback loop with guarantee that, after an image is
drawn to the display, a computer can capture this
drawn image. With this guarantee, we define an it-
eration of this causal video feedback loop as the fol-
lowing three step sequence: 1) display of image, 2)
capture of displayed image, and 3) computer analysis
of the capture which may determine the image of the
display at the next iteration.

Once a causal video feedback loop is set up, we
obtain camera-display pizel correspondence, i.e. the
one-to-many mapping of a given camera pixel to the
set, of display pixels that are seen by the given camera
pixel. In particular, we cite [1] as a robust technique
of finding this correspondence. Given this correspon-
dence and proper manipulation of the display, we can
decompose the behavior of the system into an array
of causal video feedback loops that interact, but have
independent computation.

3 Active Shadows Algorithm

When the setup of the previous section is done,
the Active Shadows algorithm implements a virtual
shadow on the display, to be explained in more detail
in this section; a well-defined subset of this shadow
is a high-quality video object segmentation. If we
suppose that the camera is a kind of virtual light
source, then the Active Shadows algorithm overlays
a shadow of a chosen color on top of the displayed
image itself where the camera’s view is blocked. The
shadow helps to resolve visual ambiguity of segmen-
tation, indicates which part of the display is occluded
from the camera view, and gives visual feedback to
the user as well. The system gives the same output as
a chromakey system [3], except that the user is phys-
ically interacting with the displayed image, instead

of a colored background.

The Active Shadows algorithm hybridizes two dif-
ferent techniques: passive visual testing where we
have no control over the visual field, and active visual
testing where we can change the color of an object in
the visual field to any color.

We begin with an example of passive visual test-
ing, a simple foreground and background separation,
a simplification of [6], only using image differencing.
If we know the camera pixel colors for an unoccluded
static background via calibration and apriori knowl-
edge of display image, we subtract the current cam-
era image from the background. The positions in the
resulting image difference of high magnitude are as-
sumed to be occluded. Many errors in segmentation
stem from this visual ambiguity (e.g. objects that are
same color as display image) and the ability to fully
model the background.

We can force the background to a reserved color
by changing the display as a kind of active testing.
Assuming an object has a different color than the
reserved color, then the previous solution has no am-
biguity. However, the display can only shows this
reserved color.

Active Shadows complement passive visual testing
with active visual testing, while maintaining display
functionality. To do so, we split the colorspace of
the display into two parts: one for the reserved color
and the remainder of the colorspace in which to draw
the displayed image. Although this split of the col-
orspace degrades the dynamic range of the display,
Active Shadows can independently choose either ac-
tive or passive testing for each camera pixel. Most
of the time, we use the passive testing to look for
occluded objects; however, when a camera pixel is
suspected of occlusion, our camera-display setup uses
active testing to double-check for occlusion. Only an
object that can maintain ambiguity through the color
change of the display will remain ambiguous.

To assist with the explanation of the Active Shad-
ows algorithm, we define some basic variables:

| Basic Variables |
d(z1,12)

the distance in camera pixel between
two camera pixels (z1,z2)

t our time index which is the number of
iterations in the causal video feedback
loop as defined in section 2

) color of the camera pixel z at time ¢
a boolean function that returns true
when two camera pixel colors are vi-
sually equivalent




| Variables from Calibration

the set of display pixels described in sec-
tion 2 of camera-display pixel correspon-
dence where x is a camera pixel

v {z|B(x) # 0}, i.e. the set of camera points
in the video feedback loop

R.(z) colors of camera pixel z with the display
showing only the reserved color
R;i(z)| colors of a camera pixel z with the display
showing only the displayed image
| Algorithm Variables |
S)-2(z) = € +, the state of the state machine

associated with each pixel in v, at time
t. Superscript denotes steps between a
single iteration

g the shadow growth parameter as a dis-
tance in camera pixels

| Output Variables |

P, | the set of pixels on the display to be drawn
with the reserved color (otherwise, the pixels
are drawn to the display image; in terms of
t, the effects of P; are seen in camera image
I)
V; | the segmentation output of camera pixels,
i.e. camera pixels determined to be occluded
With these variables, the Active Shadows algo-
rithm associates a basic state machine with each
pixel. The state transitions depend first on the in-
coming visual information and then the states of
nearby pixels. The four states of the state machine
that are coupled with each pixel are defined as fol-
lows: 1) Passive Testing (PT), 2) Passive Suppressed
(PS), 3) Active Testing (AT), and 4) Active Con-
firmed (AC).

S(z) € {PT,PS,AT,AC} (1)

We define the initial conditions (¢ = 0) of the al-
gorithm,

Vz € 4,58 (xz) =PT

PO — @ (2)

For t > 1, we can define the computations as a
series of state transitions pass over the set of camera
pixels v applied sequentially as shown in Figures 4, 3.

The first pass, (S — S}) blends in passive and
active testing by choosing the method depending on
the state associated with the camera pixel. Passive
and active visual testing is, respectively, defined as:

pi(z) =C E(m)aﬁi(x)

L (3)
ay(z) = C (I(x), Re(z)

BEGIN¢? = 0)

(t>0)
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Figure 3: Algorithmic Steps For Active Shadows for
each causal video feedback loop iteration

When the passive testing indicates occlusion, we
move the pixel from PT to AT state, driving the
display to a reserved color. On the next iteration, we
double-check the pixel color. If the pixel z is found
to be unoccluded by this active testing, then it moves
back to PT state, drawing the display image to the
display area ((z). However, if it is found to be oc-
cluded with active visual testing in the next iteration,
then it moves into a AC state and is considered to
be occluded with a high degree of certainty. Thus,
the output segmentation is defined as:

Vi = {z €1/, (x) = AC} 4)

In state AC, the pixel is actively tested until the
occlusion is removed.

The second pass of state transition (S} — S?) en-
codes a locality heuristic:

_ [ 1 3yeVld=,y) <ry)
gi(2) = { 0 otherwise (5)

i.e. if a camera pixel z is close to an occluded pixel
y (€ V;) as defined by the function d(z,y), then the
pixel z is probably being occluded. Camera pixels
that pass this heuristic and were passively testing
(PT) for occlusion or suppressed (PS) move into the
active testing state (AT). In Eq. 5, the parameter
rg is inversely proportional to the speed the shadow
grows across an region that is ambiguous to passive
testing. The drawback of this heuristic is that there
will always be a set of unoccluded camera pixels that
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Figure 4: Three passes of State transitions in order
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will be drawn to white, even though they are not oc-
cluded. The setting r, is directly proportional to the
thickness of “halo” of display pixels, that are drawn
to a reserved color, but are unoccluded.

After the second state transition pass, we deter-
mine the set of pixels are doing active visual testing,
and drive the display accordingly:

wy =A{z € 7|St2($) € {AC,AT}} (6)
P(t+1) = Umet ('B(m))

The third state transition pass (S — S7,,) en-

sures that active visual testing does not interfere with

passive testing. If not properly suppressed, uncon-
trollable oscillations will occur in the video feedback

loop. '
O A A

0, otherwise

(7)

We move these affected pixels from the PT state into
PS state to turn off passive testing, and move them
back when the interference disappears.

After three passes of state transitions, the next it-
eration of the Active Shadow algorithm can occur.
If we assume the pixel comparison operation C, d
distance calculation, and state transitions are O(1)
operation, then one iteration of the Active Shadows
algorithm is O(n) where n is merely |[|v||.

4 Results/Conclusion

With Active Shadows producing high-quality seg-
mentation in real time, we implemented two major
applications: 1) a virtual touchscreen and 2) real-
time rich media capture of presentations. Active

Shadows runs on a Compaq 800w notebook with
Hewlett Packard XP8000 projector and an inexpen-
sive webcam with Linux OS.

By binding the output segmentation (V;) with an
algorithm to discover the pointing [4], we can imple-
ment a robust virtual touch screen algorithm that
also accepts pointing from a laser pointer. We con-
vert these pointing events into mouse events for an X
server into mouse events, enabling, for instance, web-
surfing by directly touching links in Netscape appli-
cation displayed on a projector.

As shown in Figure 1, the second application uses
the output segmentation with correspondence infor-
mation from the camera to the display to project the
video of the physical person on top of the digital im-
age. The physical correspondences (where I touch on
the screen) are still maintained in the digital domain
(the video of where I touch of the screen is overlaid
directly on top of that area). The system layers a
speaker’s audio and physical presence in front of a
display on top of a presentation image to create a
recorded rich media.

Active Shadows is an expandable, powerful algo-
rithm that can be amended with extra states and
state transitions to include even more functionality.
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