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ABSTRACT

This paper considers visualizing and summarizing an image se-
quence using an unsupervised manifold learning method. The im-
age sequence is articulated on a parameterized low-dimensional
manifold and embedded in the high-dimensional image space. The
manifold is discovered using a nonlinear subspace method preserv-
ing the underlying geometry and local neighborhoods. The visu-
alization and summarization of video contents are performed on
the manifold articulation primitives. We construct two modes of
roadmaps serving like tourist maps guiding the sequence travers-
ing. The first mode discovers and exhibits landmark points signal-
ing the dramatic changes in video content in the temporal order.
The second one displays the global content coherence by preserv-
ing the geodesic distances on the nonlinear manifold, while relax-
ing the temporal constraint. Experimental results demonstrate the
effectiveness of the algorithm.

1. INTRODUCTION

Recent years have seen increasing interest in visualization and sum-
marization of image sequences, including video, with applications
to image and video indexing, retrieval, content adaptation, interac-
tive service, and so on. Due to the ubiquitous use of imaging sen-
sors, such as security surveillance cameras, satellite multispectral
sensors, and computerized tomography (CT), image sequences are
produced in huge quantity and in an anywhere, anytime, and any-
how manner. These sequences like surveillance videos are often
highly redundant, and a substantial amount of time is spent in sift-
ing important contents. To better utilize high-dimensional, large
volumes of data, there is a strong need for efficient presentation
of images preserving their essential information, and for automatic
summarization facilitating the understanding, analysis, adaptation,
and exploration of visual contents.

In the literature, video browsing and summarization usually
detect shot transitions, and select representative frames from each
shot [1] - [4]. Some techniques clustered the key frames to provide
a hierarchical representation of video segments [5] - [7]. By mak-
ing use of principal component analysis (PCA), motion and color
features are condensed before a supervised classification method,
hidden Markov model (HMM), is applied to the principal compo-
nents [8]. Several works also use probabilistic unsupervised learn-
ing models for video, such as the Gaussian mixture model (GMM)
[9] and nonparametric statistical models [10]. They mainly fo-
cus on the statistical properties of temporal-spatial data, not the
geometrical ones. These methods provide meaningful and useful
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browsing, classification, or summarization of video data. The im-
ages usually lie on a significantly low-dimensional manifold (in
the high-dimensional image space), which provides intrinsic in-
formation on the video content and formation. Camera panning,
zooming, tilting, and the motion or evolution of objects can natu-
rally create these manifolds, highly nonlinear globally. These in-
herent nonlinear structures, however, have not been fully exploited
in the literature of video browsing and summarization. In this pa-
per, we construct two modes of video roadmaps on top of the man-
ifolds embedded with a subspace learning method ISOMAP for ef-
ficient visualization and summarization. Our algorithm can clearly
show the landmark points of video trails and the compact groups
of images, associated well with the contents semantically.

The rest of the paper is organized as follows. Section 2 intro-
duces ISOMAP for subspace learning and manifold embedding.
Section 3 constructs roadmaps of video on top of the embedded
manifolds. Section 4 concludes the paper.

2. LEARNING INHERENT MANIFOLD OF VIDEO

Typical image sequences in a video consist of shots, that is, con-
tiguous frames between fades, wipes, cuts, or large camera mo-
tions. Groups of shots may further constitute scenes that exhibit
some consistency in the semantic context of the video. These scenes
may have different shots or alternate between a few shots. In the
formation of scenes, the object often is recorded by cameras with
different motions such as panning, zooming, and tilting. The ob-
ject can also change appearance in pose and articulation. The vari-
ation of these parameters gives rise to articulation manifolds in the
high-dimensional image space [11] - [13]. The manifolds provide
the underlying parametrization of video content and an arguably
optimal representation of feature vectors from video frames. The
importance of such a description is that a long segment of video
can be treated as a whole, allowing one to build efficient and mean-
ingful analysis, indexing, and classification applications. In gen-
eral, the movement of objects is highly nonlinear rather than linear,
and the video data are more likely to lie on a nonlinear manifold
instead of a hyperplane. The PCA, or equivalently, singular-value
decomposition (SVD), has long been adopted for dimensionality
reduction and content description in pattern recognition, or shot
change detection in image sequence analysis [2] [4] [8]. It can,
however, provide only a linear subspace, a hyperplane, to approxi-
mate the underlying structure of the images. In general, the move-
ment of objects is highly nonlinear rather than linear, and the video
data are more likely to lie on a nonlinear manifold instead of a hy-
perplane. The PCA also provides a mapping by concentrating the
energy in the eigenspace spanning all data, without preserving the
local topology. Thus, some of the intrinsic structure may be re-
vealed by the PCA projection; however, much relatively smooth
trajectory will still be disguised. To discover the inherent mani-
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folds on a significantly low-dimensional space, a manifold learn-
ing technique ISOMSP is exploited in this paper.

The ISOMAP algorithm [12] used in this paper performs the
following nonlinear manifold learning. Assume there are N points
{xi}N

i=1 in the image feature space X . First, we employ a distance
function to quantify perceptual similarity of images. As fully un-
derstanding of human perception is still immature, in this paper,
we use a weighted L1 and L2 distance, D(xi,x j) := 0.4L1(xi,x j)
+0.6L2(xi,x j). This measure works well in our experiments, and
better perceptual distance may lead to improved performance. Sec-
ondly, a local neighborhood of M nearest neighbors is found for
each point, and a graph G is defined by connecting each point with
its neighbors. We have chosen M = 8 experimentally. Thirdly, all
pair of distances DG = {d(i, j)} containing the shortest paths are
built. This is done by initializing d(i, j) = D(xi,x j) if i, j are neigh-
bors or ∞ otherwise, and by replacing d(i, j) by min{d(i, j),d(i,k)
+d(k, j)} for each value of k = 1, · · · ,N. Lastly, define matrices
S and H such that Si j = D2

G(i, j), and Hi j = δi j − 1
N , then find the

eigenvalues λ1 ≥ ·· · ≥ λN of − 1
2 HSH. The ith component of the

corresponding eigenvectors vt for λt is denoted as vi
t . The ith com-

ponent of embedded d-dimensional vector yi is
√

λlvi
t .

The geodesic distance between input data is used to capture in-
formation on the nonlinear manifold structure. Compared to PCA,
ISOMAP preserves the local topology of input data, that is, the
nearest neighbors of the input data in the original feature space are
mapped to the nearest neighbors in the lower-dimensional space.
The local topology is more intrinsic and reliable than the global
one, particularly for the purposes of video visualization, because
we look for compact groups preserving inherent topological struc-
tures in the original image space. Locally linear embedding (LLE)
and Hessian Eigenmap [14] methods have also been proposed for
subspace learning. We adopt ISOMAP for its relative robustness
to noise and outliers. To demonstrate this, we add Gaussian noise
to Swiss roll data [14]. Then, ISOMAP and several other meth-
ods are used to embed manifolds in the noisy data. It is found that
ISOMAP has best preserved the local neighborhoods and the in-
trinsic geometry. Though ISOMAP only partially unfolds the man-
ifold, the others have mixed up the local neighborhoods. These
properties are important in considering an entire sequence that of-
ten reveals both long range and subtle short-time relationships.

3. VIDEO ROADMAPS ON TOP OF EMBEDDED
MANIFOLDS

Often times, there is an hour or more material in a long image
sequence, and there is no roadmap to help viewers to find their way
through the sequence. It would be much helpful if major contents
or landmark frames can be filtered computationally to guide the
viewers accessing and navigating the sequence.

We construct video roadmaps on top of the embedded mani-
folds. Two modes of roadmap are built: One is to follow the tem-
poral trail of video for important landmark points; and the other is
to display the coherent group on a two-dimensional plane, retain-
ing the intrinsic similarity of images without the temporal order.
By doing so, the “sequential processing” of images in a natural
time series is transformed into the “batch processing” grouped by
content similarities.

We take each single image or single frame in a video as our
data unit. Since images have very high dimensions, we extract im-
age features for efficient representations. The features need have

high correlations if there is a perceived similarity. The pixels are
not good features, because small camera motions usually lead to
decorrelations of pixels in the same region for different frames,
even though there are the same visual contents. Color provides
robust information about the contents [15] and serve as our main
features. For image sequence without audio component, the visual
feature set may include color histogram, the first two moments in
RGB space, and Tamura’s features: coarseness, contrast, direc-
tionality, linelikeness, regularity, or roughness [16]. More visual
features may be used to better capture the visual information, or,
a subset can be utilized to have on-the-fly computation, e.g., in
real-time interactive services. For video with audio component,
the mel-frequency cepstral coefficients (MFCC) can be included,
which were used in combined audio and video watermarking [17].
Those features usually are as many as several hundreds or even
thousands. Each image is represented as a data point in the fea-
ture space, whose dimensionality is much lower than the original
image space. However, for visualization purposes, the dimension-
ality of the feature space is still prohibitively high. Parameterized
by camera or object movement, the underlying manifolds usually
have significantly lower dimensionality, and convey key informa-
tion on the articulation of video structures. We extract the intrinsic
manifolds, and construct video roadmaps based on the manifolds.

It is observed in our experiments that, often times, the mani-
fold can be well embedded into one- or two-dimensional space for
video clips. For example, we learn manifolds for video clips Sports
Car and Planet Formation, of 180 and 926 frames, respectively.
These video clips include one scene change (e.g., Sports Car) and
multiple dramatic changes in an evolutionary process (e.g., Planet
Formation). The residual variances after the embedding with dif-
ferent dimensionalities are shown in Fig. 1. They are already very
small with one-dimensional embedding, and close to zero with two-
dimensional. This observation motivates us to construct two types
of video roadmaps based on one- and two-dimensional manifolds,
respectively.
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Fig. 1. Residual variances after embedding into low-dimensional
space with different dimensionalities for video clips (a) Sports Car,
and (b) Planet Formation.

3.1. Roadmap along Temporal Sequence

Our first video roadmap is based on the embedded one-dimensional
manifold as a temporal process. The resultant trail shows the un-
derlying articulation of different images. Fig. 2 shows the primi-
tive roadmap for Sports Car and Planet Formation. It is observed



that shot or scene changes correspond to landmark points of the
trails. Usually, the manifolds consist of line segments or knobs.
The landmark points are around the sharp turns of the manifolds.
For the Sports Car clip, we demonstrate the correspondence in Fig.
3. For the Planet Formation, there are slow evolutionary as well as
explosive changes, with the latter captured by the spiky landmark
points.
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Fig. 2. Trails for video clips (a) Sports Car and (b) Planet Forma-
tion.

Fig. 3. The original images from a sports video clip. From the
first to the 143th, a playing statue is displayed; and from the 143th
to 180th frames, the scenes changes to car racing. The change of
scene corresponds to the landmark point of the video trail.

Using ISOMAP, the intrinsic geometry and local neighborhoods
of the data are preserved in the low-dimensional space. On the em-
bedded manifold, a cluster or segment of data usually have small
geodesic distances thus similar features; in this sense, each cluster
corresponds roughly to a “story unit.” Sharp changes of a manifold
may reflect dramatic changes of the story or semantic contents.
To quantify the rate of changes, we make use of the difference
of adjacent trail points. For example, the difference signals for
the embedded one-dim manifolds for Sports Car and Planet For-
mation are plotted in Fig. 4. The difference signals have many
small oscillations, which may correspond to small changes in con-
secutive image, or noise introduced in image acquisition, or pos-
sibly by video coding errors. For a long image sequence, these
small changes are regarded insignificant. We desire to retain sig-
nificant changing points and obliterate the noisy or insignificant
ones. Wavelet denoising algorithms [18] are employed for this
purpose. Fox example, the denoised difference signals for Sports
Car and Planet Formation using symlet are shown in Fig. 5. The
landmark points can be easily captured for their association to the
dramatic changes of the denoised difference signals. For visual-
ization of image sequences, the denoised difference signals serve
as our roadmap. The neighborhoods of landmark points of the
roadmap are representatives of the video and need be extracted for
summarization.
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Fig. 4. Difference signal for one-dim manifold of video clip (a)
Sports Car and (b) Planet Formation.
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Fig. 5. Denoised difference signal for one-dim manifold of video
clip (a) Sports Car and (b) Planet Formation.

3.2. Roadmap along the Video Trail

In the above we construct a mode of roadmap along the tempo-
ral sequence on top of embedded manifolds. Now we consider
the second mode. In some videos, some scenes may have many
recurrences. For example, in a sports video, a commercial adver-
tisement may be inserted several times at different locations. Or,
in surveillance video, there are many repeated scenes. In this case,
viewers may have interest in browsing through different scenes.
The first mode of roadmap is not proper for this purpose, since it
gives landmark points along the temporal track, regardless of how
many times a scene has occurred. We trade time for space so that
viewers can have a global picture of the coherence of all frames
simultaneously, instead of following their temporal ordering.

Our method is to reorganize those images by their content sim-
ilarities on the articulation manifold. It plays a role similar to a
tourist map, guiding a viewer to browse and navigate different im-
ages, indicating the direction in which the image sequence goes.
Our algorithm can also be applied to the visualization and sum-
marization of images in an image database, by discovering their
coherent connections in terms of content similarities.

Based on the embedded manifold, we construct the second
mode of roadmap with each image represented by a two-dim vec-
tor and displayed on the screen. For example, two-dim manifolds
of Sports Car and Planet Formation are shown in Fig. 6. It can
be seen compact groups are clearly formed and that each scene is
located on a knob. The turning points of the knobs are images-



of-interest and can be taken as landmark points for this roadmap.
For example, in the roadmap for Sport Car, there are mainly two
knobs; and for Planet Formation, there are mainly three knobs.
The x-axis and y-axis represent the first and the second dimen-
sions of the embedded manifolds, respectively. They also provide
directional information of the movements or poses of the objects.
Visualization and summarization are performed on these knobs by
choosing representative frames, or landmark points.

Fig. 6. Roadmap on top of two-dim manifold of video clip (a)
Sports Car and (b) Planet Formation.
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4. CONCLUSION

In this paper, we construct roadmaps guiding the visualization and
summarization of image sequences. The intrinsic parametric struc-
ture underlying the video is considered by embedding the artic-
ulation manifolds. Two modes of roadmaps for video trails are
then built. The first mode discovers the landmark points signaling
the dramatic changes in video content in the temporal order. The
second one displays the global content coherence by preserving
the geodesic distances on the nonlinear manifold. Multiresolution
VMAP is being developed for scalable browsing and summariza-
tion. The method is being incorporated into video monitoring and
surveillance systems for interactive explorations of video content.
Integrating extracted video, audio, and textual information using
graphical models for intelligent multimedia services on the con-
structed roadmaps, especially when high-level domain knowledge
were available, is our future research topic.
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