
CONTOUR METRIC BASED IN THE CURVATURE EXTREMES OF THE DIFFUSED
CONTOUR

António M. G. Pinheiro

Unidade de Detecção Remota
Universidade da Beira Interior

6200 Covilh̃a - Portugal
E-mail: pinheiro@dfisica.ubi.pt

ABSTRACT

The distance of the relative positions of the curvature ex-
tremes of two shape contours are used as the similarity
measure between two shapes. The shape contours are first
smoothed through Gaussian filtering. So, the shape con-
tours are represented at a given scale, where small geomet-
ric features have been suppressed. The curvature extremes
will define a set of descriptors for the shape contours. As in
the human visual system they are suitable for contour com-
parison. A reliable shape based retrieval technique is then
defined. This shape comparison method is also compared
with others. Some advantages are identified. Results that
show the reliability of this method are shown.

Keywords: Shape, Contour, Similarity Metric, Shape Re-
trieval, Scale, Curvature.

1. INTRODUCTION

Shape comparison techniques are used in pattern recogni-
tion and in image retrieval. Together, with color and texture
analysis provide very reliable tools for image recognition.

Humans tend to make an image comparison based in
their objects. This is because objects are one of the first
things detected by the human inspection of images. So, the
similarity between two images tends to be defined in func-
tion of the similarity of their objects. It is important to de-
fine methods that allow shape comparison, because shape is
a very important object descriptor.

A shape comparison method must match our intuitive
notion of shape resemblance. It should be invariant to trans-
lation, rotation and uniform scaling. There are many tech-
niques for shape comparison purposes. Some shape com-
parison methods compute the similarity between two shapes
based on the shape geometry similarity [1]. However, if one
of the object suffers some kind of deformation, these kind of
methods become usually useless. The solution is to detect

feature points, that some how, define the main visual prop-
erties of the shape. A very common solution results of com-
paring the maxima of the contours’ curvature zero crossing
of the scale space image [2]. These maxima will then de-
fine a contour descriptor suitable for comparison. Among
the several approaches for shape description and compari-
son must also be distinguished the Fourier descriptors [3].

In our work, we propose to replace the curvature zero
crossing of the scale space image maxima [2], by the ex-
tremes of the curvature after gaussian smoothing of the con-
tour. Using a proper strategy, a reliable and efficient shape
metric is defined. This method is applied in a shape based
retrieving scenario. Very promising results were obtained
using the SQUID data-base [4] with 1100 contours.

2. SCALE SPACE REPRESENTATION OF A SHAPE
CONTOUR

Consider the shape contour as a close plane trajectory` of
a point. Ifx andy are the plane coordinates, the path` can
be represented by [5, 6]:

` : S ⊆ < → <2, `(s) = [x(s), y(s)] (1)

where the parameters is chosen to be the arclength of the
curve. A scale space representation of the contour can be
obtained by the diffusion equation:

`t = ∇.(τ∇`), (2)

where the original contour̀(s, 0) is used as an initial con-
dition. In the simplest formτ is a constant, resulting the
linear diffusion equation

`t = τ∆`, (3)

that leads to the following solution at each scalet:

`(s, t) =
{

`(s, 0) if t = 0
(G√2t(s) ∗ `(s, 0)) if t > 0 , (4)



Fig. 1. Extremes for the scalest = 32, 128, 256, 512 e 1024.

Fig. 2. Zero crossings for the scalest = 32, 128, 256, 512 e 1024.

where Gσ = (1/2πσ2) exp (−s2/2σ2) is the Gaussian
function with a standard deviationσ =

√
2t and ∗ rep-

resents the convolution operation. Equation 4 can be ex-
pressed in terms of two components:

`(s, t) = [X(s, t), Y (s, t)], (5)

where[X(s, t), Y (s, t)] = [G√2t ∗ x(s), G√2t ∗ y(s)].
The resulting trajectories̀(s, t) represent smooth ver-

sions of the original contour in a scalet. Higher scales (or
lower resolutions) result in smoother versions of the original
contour.

The curvature functionκ`(s, t) characterizes the chan-
ge of the direction of a curvè(s, t). At a given scalet,
the curvature function is defined as the instantaneous rate of
change of the tangentθ(s, t) of `(s, t) at points:

κ`(s, t) =
dθ(s, t)

ds
(6)

The main feature points can be detected at any scale by us-
ing (6). By finding the local curvature extremes, we are able
to identify the contour positions where sharp changes in the
contour direction occur. The curvature zero crossings define
an inflection of the contour direction (change in the contour
concavity).

These points of the curvature define important geomet-
ric characteristics of the contour, that have important prop-
erties expected from the scale space theory developed in
[7, 8]: 1) Extremes or zero crossings in higher scales (lower
resolutions) identify more important geometric properties.
Due to the stronger smoothness, these points have global
geometric importance. When these feature points are only
detected in lower scales only represent local geometric char-
acteristics of the contour. 2) When they are present in higher
scales (low resolutions) they always exist in the lower scales
(high resolutions). Another important property is related to
the fact that along the scale, extremes and zero crossings
have always similar positions, and can easily be tracked
along the scale.

3. THE SHAPE SIMILARITY METRIC

The main motivation of this work results from the fact that
maxima of the curvature represent very important feature
points for the human visual comparison of shapes. Extremes
correspond to the salient contour points (see figure 1). The
human visual system tends to be more sensitive to this fea-
ture, in opposition to the position of the zero crossings of
the curvature. As they represent points where the concavity
of the contour changes (see figure 2), they are ideal points
for contour segmentation [9].
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Fig. 3. Scale space image of the zero crossings and of the
extremes for the contour of figure 1.

But, is there a huge difference between the curvature ex-
tremes position and the maxima of the curvature zero cross-
ings scale space image? In fact, there is not, as it is shown
in the graphic of figure 3. The maxima of the curvature zero
crossing scale space maps are in similar positions to the cur-
vature extremes. Moreover, extremes have other kinds of
information associated, like if they are maxima or minima,
or what is the curvature value.

In this method, the curvature of the smoothed contour in
a scalet are computed. Then, are defined a set of points that
represent the curvature value in each position where a cur-



vature extreme exists. These points can be represented by a
set of points represented by(κ̂`, ŝ) is defined. Therêκ` rep-
resents the curvature normalized to one, andŝ the arclength
of the curve normalized to one too. With these normaliza-
tions the method becomes invariant to the uniform scaling
of the contour.

The above formulation leads to a shape metric given by
the summation of the euclidean distances between the points
where the curvature extremes are located,(κ̂`, ŝ), of the two
contours under comparison:

S =
∑

d ((κ̂`1 , ŝ1) , (κ̂`2 , ŝ2)) (7)

where 1 and 2 represent each of the contours.
The distance between the extremes of the two contours

(κ̂`, ŝ) is defined in a neighbourhood∆ŝ. The two curva-
ture extremes must be of the same kind (maxima or min-
ima) and have values within a∆κ̂`. In this way, only the
same kind of extremes are compared. When a curvature ex-
treme of one of the contours does not have a correspondent
one, a weighted euclidean distance of(κ̂`,∆ŝ) with (0,0) is
computed. This missing case is only very serious if the cur-
vature has a relatively high absolute value. Otherwise, only
represents a small detail of the contour, and can’t weight too
much in the finalS value.

For matching purposes, all the combinations of starting
points of both contours should be compared. However, such
a procedure becomes of very heavy computation. In retriev-
ing environments, where each contour is compared with
a whole data-base of contours, the efficiency degradation
would become very serious. To avoid this situation, only
the combinations where the main curvature extremes match
between them, are considered. The experimental tests, leads
to the conclusion that this limitation will improve in most of
the cases the quality of the matching results, while improves
the computational efficiency by hundreds of times.

4. RESULTS

As can be seen in figure 1 and in the graphic of figure 3, a
scalet increase, results in less extremes. So, higher scales
will lead to a less detailed comparison, while lower scales
leads to more detailed comparison. However, low scales re-
sult in several extremes that represent local geometric fea-
tures. These geometric features are in general not important
for contour comparison purposes. So, it is chosen a rela-
tively high scale, that keeps the most important geometric
details of the contour. A good example of such a scale is
t=512 (see figure 1).

The smoothing scale is also a factor that can influence
the shape comparison when there is a uniform scaling. To
avoid different degrees of smoothing, the scalet is com-
puted proporcionally to the dimension of the contour. So,
a scalet will be considered from now on, as the smoothing

scale of a contour with a 1000 points. The real smoothing
scale will be given byt× 1000/N , whereN is the number
of points of the contour.

With these considerations, several experiences using the
described method have been made. In general, good results
are obtained.

In figure 4 are shown examples of shape based retriev-
ing, using the SQUID data-base [4]. From a subjective point
of view, the results are very good. They are representative
of several experiences that have been achieved. From the
different results it is concluded that the defined technique
performs very well when used in shape based retrieving en-
vironments.

The results show the independence of the method with
the rotation and uniform scaling. The last row show an ex-
ample that reveals the robustness against deformations of
the initial shape.

This method is also of very efficient computation. The
search for the first point of the contours is very fast because
are only used a small set of possibilities, that result in a
match of the extremes with higher absolute value.

The descriptors computation are also of efficient com-
putation, because only a filtering step is necessary. For the
curvature zero crossing maxima of the scale space image,
filtering must be done in several frequencies, until an ac-
ceptable scale space image is build. The resulting image
must allow the correct extraction of the maxima positions.

The results shown were obtained with fixed parameters.
Were used the following values: scalet = 512, neighbour-
hood∆ŝ = 0.1 and maximum difference between compared
extremes∆κ̂` = 30%.

Change of the parameters lead to different results.
Those change can be explained by the parameter mean-
ing. So, a tiny window∆ŝ results in a more selective re-
trieving, relatively to the difference of the elongation of the
shape contours between salient points. Higher values of
∆κ̂` makes the retrieving process more selective relatively
to the saliency of each change of the contour direction.

Also interesting is to watch the difference of the curva-
ture graphics. As an example, the last match of the middle
row (figure 5). The query contour (left one) is matched with
the fifth retrieved (right one). The graphics represent the
situation that leads to the matching position.

5. SUMMARY

The described technique has revealed to be a very robust,
reliable and efficient shape comparison, suitable for shape
based retrieval.

By using the extremes of the contour curvature, this
technique uses a descriptor that defines important feature
points. The human visual system is very sensitive to this



Fig. 4. Examples of shape based retrieving. From the left column to the right: query contour and first retrieved followed by
the most similar contours, in a similarity decreasing order.
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Fig. 5. Curvature graphics in the matching position of the
contours on the left and on the right of the middle row of 4.

geometric feature. Because of that, the retrieved results ap-
pear so close to the human notion of similarity.

This paper defines a technique for shape comparison
that is very competitive with the most well known ones.
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