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ABSTRACT

Facial expression interpretation, recognition and analysis is a key
issue in visual communication and man to machine interaction. In
this paper, we present a factorization technique which decomposes
the appearance parameters coding a natural image. This technique
is then used to perform facial expression synthesis on unseen faces
showing any undetermined facial expression, as well as facial ex-
pression recognition.

1. INTRODUCTION

Natural human-machine interaction is becoming an active and im-
portant research area. Adequate feedback like speech, facial ex-
pression and body gestures are essential components of such inter-
action since these communicative events satisfy certain communi-
cation expectations in human-human interaction. Furthermore, the
human face constitutes a source of informative social signs which
allow good communication expectation response.

Face configuration is mainly influenced by the interaction of
two inherent major factors: identity and facial expression. Fa-
cial expression recognition works showed [1] that six basic emo-
tional categories are universally recognized in nearly all cultures,
namely: joy, sadness, anger, disgust, fear and surprise. Several
other emotions and many combinations of emotions have been
studied but remain unconfirmed as universally distinguishable.

This paper addresses the issue of appearance based face rep-
resentation and appearance factorization for facial expression syn-
thesis and recognition.

2. ACTIVE FACIAL APPEARANCE MODELS

We choose to represent faces using the active appearance model
(AAM) [2] which is a powerful tool allowing to extract from any
unknown target face, a set of appearance parameters coding a syn-
thetic face similar to the target in terms of minimum texture error.
AAM uses Principal Component Analysis to model both shape and
texture variations seen in a training set according to:

si = s̄ + Qsci and gi = ḡ + Qtci, (1)

whereQs andQt are truncated matrices describing the principal
modes of combined appearance variations in the training set, and
ci is a vector of appearance parameters simultaneously controlling
the synthesized shapesi and texturegi. s andg are the mean shape
and texture computed on the aligned and normalized training faces.

Furthermore, in order to allow pose displacement of the model,
it is necessary to add to the appearance parameter vectorci a pose

parameter vectorpi allowing control of scale, orientation and po-
sition of the synthesized face.

The active appearance model can automatically adjust parame-
tersc andp to a target face by minimizing a residual imager(c,p)
which is the texture difference between the synthesized face and
the corresponding mask of the image it covers. The optimization
scheme used here is based on the first order Taylor expansion de-
scribed in [2] and returns parameterscop andpop.

The appearance model is constructed using the CMU expres-
sive face database [3]. Each sequence of this database contains ten
to twenty images, beginning with a neutral expression and ending
with a high magnitude expression. We select 338 frontal still face
images composed of 26 neutral expression faces, 26 moderate and
26 high magnitudeanger, disgust, fear, joy, surprise and sadness
expressions. Each moderate expression is chosen manually by ex-
tracting an intermediate frame from the video sequence. 37 other
neutral faces are also added. The standard model is built using 50
shape modes, 170 texture modes and 120 appearance modes thus
retaining 98 percent of the combined shape and texture variation.
The shape-free texture vectorgi is composed of 5871 pixels and
the shape vectorsi dimension is 106.

3. APPEARANCE FACTORIZATION

The AAM face representation described above allows automatic
extraction of a set of appearance parameters from any unknown
target face. The extracted parameters control simultaneously the
reconstructed face shape and texture which contain information
about the reconstructed face identity and facial expression. Hence,
this representation might be used for facial expression recogni-
tion using classification of AAM parameters; and facial expression
synthesis using direct control of AAM parameters through linear
modelling [4].

However such an approach suffers from a major drawback.
Indeed,a priori knowledge of the facial expression shown on a
target face is required in order to perform new facial expression
synthesis while keeping the target identity intact.

We wish to introduce a more general representation which al-
lows to extract from any appearance vector a subset of parameters
controlling exclusively facial expression independently of identity
and withouta priori knowledge of either expression or identity.
Such a model would allow immediate expression synthesis on any
unknown target face by replacing the extracted facial expression
parameters with the parameters corresponding to the desired ex-
pression we wish to synthesize.

Similarly, extraction of the parameter subset exclusively con-
trolling facial expression is expected to boost facial expression



recognition performance.
In this perspective, we choose to model the mapping from ex-

pression and identity parameters to natural faces using a bilinear
factorization model.

Bilinear models are two-factor models with the property that
their outputs are linear in either factors when the other is held con-
stant. They provide rich factor interactions by allowing factors to
modulate each other’s contributions multiplicatively.

Tenenbaum and Freeman [5] model the interaction between
face illumination and pose using bilinear models in order to per-
form face synthesis under novel illuminations as well as face pose
recognition. Similarly Chuanget al.[6] use bilinear models to sep-
arate video data into expressive features and underlying content
in order to perform facial expression synthesis on speaking faces.
In a more general approach Vasilescu and Terzopoulos [7] pro-
pose multilinear analysis of faces to separate factors such as iden-
tity, viewpoint, illumination and expression from pixel grey level
values. This representation is then used to perform face recog-
nition in previously unseen viewpoint or under unknown illumi-
nation. Similarly, Wang and Ahuja [8] use multilinear modelling
based on Higher Order Singular Value Decomposition (HOSVD)
in conjunction with an automatic face appearance representation
technique, in order to separate identity and facial expression from
appearance parameters. This is achieved by decomposing a 3D
observation tensor into a core tensor, a person subspace matrix,
an expression subspace matrix and a facial feature subspace ma-
trix. This decomposition is then used to perform facial expression
synthesis and recognition of the seven basic facial expressions as
well as face recognition. However, the proposed decomposition
requiresa priori knowledge of the facial expression shown on a
target face in order to perform facial expression synthesis.

In this paper, we propose a more general bilinear factorization
model which allows to separate identity and expression factors on
any unknown target face showing an undetermined expression in
order to perform facial expression synthesis and recognition. Re-
sults are compared to previous ones obtained by direct classifica-
tion of AAM parameters.

4. BILINEAR MODEL LEARNING

Two types of bilinear models are described in this section, namely
the symmetric bilinear model and the asymmetric bilinear model.
The general symmetric model allows to represent the interaction
between style and content factors for a given observation, whereas
the simpler asymmetric model is style specific and requires one
factor to be known in advance. Detailed model construction for
both configurations is addressed below.

4.1. The bilinear symmetric model

A bilinear symmetric model represents the interaction between
style as and contentbc factors for a given observationysc ac-
cording to:

y
sc
k = a

sT
wkb

c
, (2)

whereysc
k represents thekth component ofysc andwk is a style

and content independent matrix characterizing their interaction.
For a training set ofS×C observations with S different styles

and C different contents, the observation matrix is obtained by

stacking theS × C observation vectorsysc style-wise. We ob-
tain the vector transpose of such a stacked matrix by permuting
the stacking procedure to content-wise as shown in equation (3).
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The symmetric model can then be written in a compact matrix

form:

Y =
[

W
VT

A
]VT

B, (4)

whereA andB represent the stacked style and content parameter
matrices,

A =
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. . . a
S
]

, B =
[

b
1

. . .b
C

]

, (5)

andW is the stacked interaction weights matrix.
Training a bilinear symmetric model consists in learning style,

content, and weight matricesA, B andW which minimize the total
squared error over a training set between the actual and the recon-
structed observations.

Let I andJ be the dimensions of the style and content vectors.
I is chosen to be equal to the number of styles shown in the training
set(I = S) whereas it is recommended to chooseJ by looking
for an elbow in the singular value spectrum ofY [5].

Least squares optimal values ofA andB are iteratively esti-
mated using singular value decomposition as follows:

1. Y = USVT and initializeB as the firstJ rows ofVT.

2. [YBT]VT = USVT and setA to be the firstI rows of
VT.

3. [YVTAT]VT = USVT and updateB to be the firstJ
rows ofVT.

4. Repeat untilA andB are stable.

Upon convergence W is given by:

W =
[

[YB
T]VT

A
T

]VT

. (6)

4.2. The bilinear asymmetric model

While the symmetric bilinear model decomposes an observation
into a style componentas, a content componentbc and a style
and content independent interaction componentwk, the style spe-
cific asymmetric bilinear model decomposes observations into a
content componentbc and a style specific linear mappingWs.
For a given observationysc with a known style′′s′′, the bilinear
asymmetric model is given by:

y
sc = W

s
b

c
. (7)

Training the bilinear asymmetric model consists in learning
the stacked content and weight matricesB andW (Y = WB)
which minimize the total squared error between the actual and the
reconstructed observations of a training set. The least square op-
timal factors are obtained by singular value decomposition of the
training matrix: Y = USVT. ThenW is given by the firstJ
column ofUS andB is given by the firstJ rows ofVT.



4.3. Experimental setup

To build the bilinear model we extract from the CMU database [3]
a training set containing 70 frontal face images of 10 different per-
sons (contents) showing each of the seven basic facial expressions
(styles). The observation matrix is built by stacking the appear-
ance parameter vectors coding the training faces. Each column of
the observation matrixY contains the AAM appearance vectors of
a specific person with different expressions whereas each row con-
tains the appearance vectors of all the persons showing a specific
expression.

We set the dimensionality of expression vectors to be equal
to the number of expressions in the training set I=7 to allow maxi-
mum expressiveness, and the dimensionality of the identity vectors
to be J=10 which corresponds to the maximum number of train-
ing identities and construct the bilinear symmetric and asymmetric
models.

5. BILINEAR MODEL FITTING

Bilinear symmetric model fitting to an unknown target face con-
sists in extracting from the optimal appearance parameterscop (ob-
tained by AAM search and coding this face), a subset of parame-
ters exclusively coding expressionae and a subset of parameters
exclusively coding identitybi. The target face is of undetermined
identity and undetermined known or unknown expression.

Adapting the symmetric bilinear model to a target face with
undetermined identity and expression is an iterative procedure de-
tailed below whereX+ indicates the pseudo-inverse ofX:

1. Initialize bi as the mean content (identity) vector of the
training set

2. ae =
[

[Wbi]VT
]+

cop

3. bi =
[

[WVTae]VT
]+

cop

4. Repeat untilae andbi are stable.

The symmetric bilinear model fitting (eq. (4)) on a target face
with undetermined identity and expression is shown in figure (1.c).

On the other hand, if the facial expression shown on the target
face isa priori known, the extraction of the identity parameters
bi is immediatevia simple least square fitting of the expression
specific asymmetric bilinear model:

b
i = [We]+cop (8)

a b c d

Fig. 1. a: Unknown target face. b: AAM fitting. c: Symmetric
bilinear model fitting d: Asymmetric bilinear model fitting. The
difference in image quality between both bilinear models is dis-
cussed in section (6).

The asymmetric bilinear model fitting (eq. (7)) on a target face
with undetermined identity and determined (neutral) expression is
shown in figure (1.d).

6. FACIAL EXPRESSION SYNTHESIS

To perform facial expression synthesis on a unknown target face,
with an undetermined identity and expression, represented by a set
of appearance parameterscop, the bilinear symmetric model is first
adapted to the target face. The corresponding expressionae and
identity bi factors are then extracted according to the procedure
described in section (5).

a b c d
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Fig. 2. Expression synthesis using the symmetric bilinear model.
a: Symmetric bilinear model fitting. b: Neutral. c: Anger. d: Dis-
gust. e: Fear. f: Joy. g: Surprise. h: Sadness.

a b c d
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Fig. 3. Expression synthesis using the asymmetric bilinear model.
a: Asymmetric bilinear model fitting b: Neutral. c: Anger. d: Dis-
gust. e: Fear. f: Joy. g: Surprise. h: Sadness.



To synthesize any novel expressione′ while keeping iden-
tity intact an artificial appearance parameter is built by combining
the extracted identity factorbi with the desired expression factor
learned from the training setae′ :

csynth =
[

W
VT

a
e′

]VT

b
i
. (9)

Facial expression synthesis on the unknown target face of fig-
ure (1.a) without prior knowledge of the facial expression is shown
on figure (2). Note that the symmetric model fitting (fig. (2.a))
shows a facial expression that differs from the actual target ex-
pression. This is expected since the expression is supposed to be
initially undetermined and the similarity between the model out-
put and target face increases when the correct target expression
(neutral) is synthesized as shown on figure (2.b).

However, if the expression shown on the target face is deter-
mined, the asymmetric expression specific bilinear model is ad-
justed to the target face and the identity factorbi is extracted. The
artificial appearance parameter is then built by combining the ex-
tracted identity factor with the desired expression specific weights
matrix (csynth = We′bi). Facial expression synthesis using the
asymmetric model on the unknown neutral face of figure (1.a) is
shown on figure (3).

7. FACIAL EXPRESSION RECOGNITION

An identity specific asymmetric bilinear model, with expression
considered as content, is constructed using the same training set
described in section (4.3) giving the identity specific weights ma-
tricesWi and expression factorsB. To perform facial expression
recognition, we use a test set of 112 unknown face image showing
each of the seven basic facial expressions and run AAM optimiza-
tion to extract the corresponding appearance parameters. The iden-
tity specific asymmetric model is then adjusted to the tested face
assuming that its identity corresponds to the first training identity
and the corresponding expression factorbe is extracted. The Eu-
clidian distance is then computed between the extracted expression
factor and each of the training expression factors of matrixB. The
class yielding the minimum distance is selected. This experience
is repeated for all the 10 training identities and finally the expres-
sion is attributed to the class with the maximum number of votes
yielding a correct recognition rate of 82.14%.

The confusion matrix for asymmetric bilinear model based fa-
cial expression recognition is given in table (1).

neut. ang. disg. fea. joy surp. sad.
neut. 31 1 2 0 0 2 5
ang. 1 8 1 0 0 0 0
disg. 1 0 5 0 0 0 1
fear 1 0 0 8 1 0 0
joy 0 0 0 2 17 0 0
surp. 1 0 0 0 0 14 0
sad. 1 0 0 0 0 0 9

Table 1. Confusion matrix for the asymmetric identity-specific
factorization based expression classifier. The correct recognition
rate for 112 unknown test images is 82.14%.

For comparison, we perform facial expression recognition by
direct measurement of the Euclidian distance between the appear-
ance parameters coding the tested face and the mean of the ap-

pearance parameters coding the training faces with a specific ex-
pression. The tested expression is attributed to the class with the
nearest mean yielding a correct recognition rate of 75%. As ex-
pected, appearance factorization which allows the extraction of
an identity-independent, expression-specific factor from any un-
known target face, boosts facial expression recognition.

8. CONCLUSION AND PERSPECTIVES

We presented a technique for facial expression synthesis and recog-
nition using a bilinear factorization method which allows to sepa-
rate a vector of appearance parameters coding a face into an iden-
tity factor exclusively coding face identity and an expression factor
exclusively coding facial expression.

The advantages of such a model compared to standard linear
regression techniques described in [4] for facial expression syn-
thesis, lies in the fact that no knowledge of the facial expression
or face identity of a target face isa priori required. However, it
is not possible to control the intensity of the synthesized facial
expression which is essential to perform video synthesis. A possi-
ble solution could be the use of a multi-linear factorization model
mapping face identity, facial expression, and facial expression in-
tensity to appearance parameters.

A further extension of this work could be multi-linear factor-
ization of faces allowing to extract illumination factors thus ro-
bustifying face and facial expression recognition and synthesis to
miscellaneous illumination variations.
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