
OCTREE VOXEL MODELING WITH MULTI-VIEW TEXTURING

Karsten Müller, Aljoscha Smolic, Birgit Kaspar, Philipp Merkle, Tobias Rein, Peter Eisert,
and Thomas Wiegand

Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institut

Image Processing Department
Einsteinufer 37, 10587 Berlin, Germany

{kmueller/smolic/kaspar/merkle/rein/eisert/wiegand}@hhi.de

ABSTRACT

The reconstruction of 3D models of real world scenes and
objects and photo-realistic rendering in interactive free
viewpoint applications is a challenging task combining
image processing, computer vision and graphics. In this
paper, we present a reconstruction pipeline for cultural
heritage applications. Starting with a number of photo-
graphs of a scene, calibration information is obtained and
a 3D model is reconstructed using a hierarchical voxel
approach. This octree reconstruction generates a 3D ge-
ometry that is further transformed into a wire frame model
for smoothing and surface primitive reduction. Finally,
texture mapping in the form of view-dependent multi-
texture rendering, where original views at original camera
positions and automatic texture interpolation at intermedi-
ate positions during scene navigation is shown. Further-
more, the algorithm was adapted to exploit automatic
graphics card processing and interpolation.

1. INTRODUCTION

Multi-view scene and object reconstruction have become
widespread in recent years, due to a number of approaches
that were introduced recently. Among the 3D geometry
reconstruction methods are shape-from-silhouette voxel
approaches, which operate on a set of mask information
from all views and a set of provided calibration data [4].
To limit the complexity of voxel reconstruction, a hierar-
chical approach was introduced, namely octree recon-
struction [7], that is also exploited for the cultural heritage
reconstruction, introduced in this paper. For texturing or
coloring of 3D objects, two main classes of algorithms
have been developed. The first class contains approaches
for voxel-wise coloring [6], while the second class deals
with texture mapping. Some of the texture mapping algo-
rithms also make use of hardware acceleration and have
been specifically developed to fit the graphics-processing
unit’s functionalities including view-dependent multi-
texturing [3], Light-field mapping [2], or Lumigraph map-
ping [1]. However, voxel coloring is only suited for a
high-resolution voxel model, since each voxel can only be

associated with one constant color value. For the chosen
hierarchical octree approach, such coloring is rather un-
suitable. In this case, some of the voxels might be quite
large, depending on the object surface. Moreover, a con-
stant coloring causes the object surface to look identical
no matter which viewpoint is selected. Different lighting,
reflections, or even varying colors from different view-
points are not well represented. Moreover, due to the lim-
ited voxel resolution, fine color details on the surface can-
not be reproduced. Therefore, we suggest texture mapping
onto voxels, as it projects a texture patch onto the surface
with the texture patch size adapted to the voxel size. Often
the reconstructed voxel object is transformed into a wire
frame to obtain a smoother surface approximation of the
real object and at the same time to reduce the complexity.
However, applying a constant color to a triangle in the
mesh does not give the desired result and texture mapping
is an applicable algorithm for the representation of fine
structures with coarse polygonal meshes. Therefore, we
present a reconstruction pipeline that uses a number of
photographs of a scene, constructs a 3D geometry as hier-
archical octree voxel model, and applies a multi-view tex-
turing to exploit automatic graphics card processing and
interpolation.

2. CAMERA SETUP AND CALIBRATION

Fig. 1: Camera Positions along the temple

mailto:{kmueller/smolic/kaspar/merkle/rein/eisert/wiegand}@hhi.de

The modeling starts with the calibration of original cam-
era images. Fig. 1 shows the camera positions and direc-
tions (as small red arrows) that were used to capture im-
ages of a temple in Angkor Vat (Cambodia) that we want
to reconstruct in 3D. From this, a projection of significant
points into 3D space and resulting calibration and projec-
tion information is generated using available calibration
software, see Fig. 2.

Fig. 2: Projected points in 3D-space

3. OCTREE-VOXEL-GENERATION

After obtaining the projection information, 3D geometry
reconstruction starts by applying an octree voxel ap-
proach. The algorithm operates on the silhouette informa-
tion of all views. A user-assisted segmentation is used to
obtain this silhouette information for each view. For 3D
modeling, an initial cube is placed into the 3D scene such
that its projection into all silhouette views covers the inte-
rior area completely. In the next stage, the cube is divided
into eight equivalent cubes one in each octant. Each sub-
cube is further projected into each view and the following
rules are applied:
1. A cube that is completely inside the silhouettes of all

views, is not subdivided further, i.e. it is completely
inside the object to be reconstructed

2. A cube that is completely outside of at least one sil-
houette is omitted.

3. All other cubes are further subdivided.

Subdivision is applied, until a certain minimum voxel size
is achieved. Fig. 3 shows the different voxel resolutions
resulting from the subdivision process, starting with a
coarse voxel resolution. Here only remaining voxels of a
certain stage are shown, that are also part of the final
model.

Fig. 3: Different voxel resolutions during the octree
generation process

Finally, the octree model is obtained, including all resolu-
tion stages, as shown in Fig. 4. For better visualization,
the coarsest voxel are drawn in opaque red, while all other
resolution stages are drawn in transparent white.

Fig. 4: Reconstructed octree model, coarsest voxel
resolution red, finer resolutions transparent

4. SURFACE SMOOTHING

Although the voxel geometry is already suited for textur-
ing, visible artifacts would occur, if texture mapping is
applied onto the model at this stage. Therefore, the voxel
model is transformed into an irregular triangular wire
frame model that better approximates the original 3D ob-
ject and provides surface smoothing at the same time. A
general approach for voxel model transformation is the
marching cubes algorithm [5], where all cubes be-longing
to the object surface are triangulated. However, to obtain
a better approximation, also neighboring cubes need to be
considered, such that larger triangles can be formed in
surface areas, which are relatively planar. Fig. 5 shows a

wire frame transformation example, followed by a
smoothing operation.

Fig. 5: Transformation of a voxel model into smoothed
wireframe

The algorithm begins with the triangulation of all cube
faces that belong to the object surface. These faces are
first detected applying a marching cubes algorithm. The
result is a very dense wire frame, which is smoothed and
reduced, using automatic DirectX functionality for mesh
processing. To combine also perpendicular faces, result-
ing from adjacent cube sides, normal vector comparison
needs to be neglected for the mesh simplification routines.

5. MULTI-VIEW TEXTURING

Finally, the 3D geometry needs to be textured. As already
mentioned, a constant coloring of geometric primitives,
i.e. voxel or triangle, is not suited for good viewing qual-
ity, as the triangles are rather large and constant coloring
does render individual aspects from different views.
Therefore, a specific form of multi texturing is applied,
that guarantees relatively constant lighting conditions
when navigating through the scene and shows original
views, if the appropriate viewing direction is reached dur-
ing navigation. In general, texture interpolation is
achieved by weighting the available textures. These
weights are usually obtained by taking the dot product of
view vector and surface normal vector. For an untextured
model, this weighting is shown in Fig. 5 bottom. Each
triangle of the surface shows a different lighting, accord-

ing to its normal vector direction. Unfortunately, the tri-
angular surface structure is clearly visible not only for the
untextured but also for the textured model. Therefore, we
use an approach, where all surface triangles are illumi-
nated equally for a specific view. Instead of using the in-
dividual normal vectors of each triangle separately, a
common vector is used for all triangles for a constant tex-
ture weight for texture mapping. This common vector
equals the camera vector of that view, since we want to
have maximum weighting, if the 3D scene is seen from the
associated original camera viewpoint. Note that although
constant illumination is now achieved for one texture, all
other textures have their own texture weight. This results
in a texture blending behavior, where textures are blended
together, considering their original camera direction. An
example of the textured temple model is shown in Fig. 6,
where an intermediate view was selected.

Fig. 6: Intermediate view of the textured temple model

For a more detailed reconstruction example, the temple
model is shown in detail from two original and one inter-
mediate viewpoint in Fig. 7.

Fig. 7: Model from original viewpoints (top), interpo-
lated and corresponding view at that position (bottom)

Fig. 7 top shows two original viewpoints of the temple
model and Fig. 7 bottom-left an intermediate view posi-
tion. Furthermore, the original image at that intermediate
position is also shown in Fig. 7 bottom-right.
For the texture interpolation, it is necessary to analyze the
camera vectors w.r.t. their directions. Consider different
textures with their camera vectors Ci and viewing direc-
tion v. If texture weights would be calculated for each
view independently, e.g. as cosθ with θ being the angle
between v and Ci, lighting varies considerably during
scene navigation. Thus an approach similar to unstruc-
tured lumigraph rendering was taken from [8] and applied
as shown in Fig. 8.
 v

C1

C3

C2

CN

θ1 θ2

θ3

θN

Fig. 8: Unstructured Lumigraph Rendering [8]:
Calculate all cosθθθθ between viewing direction v and
camera vectors Ci

First, cosines are calculated as already described. How-
ever, relative weighting functions are calculated as fol-
lows.







=

≠
−=

1cos,_

1cos,
cos1

cos

i

i
i

i

i
MaxFloat

w
θ

θ
θ

θ
 (1)

This function provides a weight that reaches infinity, if
viewing direction and camera vector are parallel and
drops to 0, if both directions are perpendicular. For angles
larger than 90°, weights are assumed to be 0, since back
face clipping is provided. After calculating all relative
weights wi, absolute weights ai are obtained by normaliz-
ing them as follows.

∑
∀

=

i
i

i
i

w
w

a (2)

This approach results in absolute weights that guarantee
constant lighting during rendering and smooth interpola-
tion. Moreover, the original texture is shown when an
original camera position is reached. The last condition
results from the relative weights being nearly infinite at
these positions. Due to the normalization, this weight is
finally divided by the sum of all weights, which causes an
absolute weight ai of one, while all other absolute weights

are neglected. Rendering is finally carried out, using the
texture weights for the associated textures and applying
view-dependent multi-texturing as multistage blending.

6. CONCLUSIONS

In this paper, we have shown a 3D reconstruction pipeline
from a number of camera images. The images are used to
extract calibration information for building a hierarchical
octree voxel model. For surface smoothing and surface
primitive reduction, a transformation step for obtaining a
triangular wire frame model is applied. In the last step,
texture mapping is carried out in the form of multi-
texturing using adaptively calculated texture weights to
provide constant lighting when navigating through the
scene. Thus, a 3D model is built using only a limited sub-
set of views for texturing and automatically interpolated
remaining intermediate views. Currently, investigations
about reconstruction quality are carried out, if different
numbers of input textures are used. Furthermore, we also
work on 3D geometry extraction with multiple video tex-
tures, where a wireframe is required for each time in-
stance.

9. REFERENCES

[1] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M.

Cohen, “Unstructured Lumigraph Rendering”, Proceedings
of SIGGRAPH 2001, pp. 425-432, 2001.

[2] W. C. Chen, J. Y. Bouguet, M. H. Chu and R. Grzeszczuk,
“Light Field Mapping: Efficient Representation and Hard-
ware Rendering of Surface Light Fields”, Proceedings of
ACM SIGGRAPH, pp. 447-456, 2002

[3] P. Debevec, C. Taylor and J. Malik, “Modeling and render-
ing architecture from photographs: A hybrid geometry- and
image based approach”, Proceedings of SIGGRAPH 1996,
pp. 11-20, 1996

[4] P. Eisert, E. Steinbach, B. Girod, “Multi-hypothesis, Volu-
metric Reconstruction of 3-D Objects from Multiple
Calibrated Camera Views”, ICASSP, pp. 3509-3512, Phoe-
nix, Mar. 1999

[5] W. E. Lorensen, and H. E. Cline, “Marching Cubes: a high
resolution 3D surface reconstruction algorithm”, Proceed-
ings of SIGGRAPH, vol. 21, no. 4, pp 163-169, 1987.

[6] S. M. Seitz and C. R. Dyer, “Photorealistic Scene Recon-
struction by Voxel Coloring”, Proc. Computer Vision and
Pattern Recognition Conf., pp. 1067-1073, 1997.

[7] R. Szeliski, "Rapid Octree Construction from Image Se-
quences", CVGIP: Image Understanding, Vol. 58, No. 1,
July, pp. 23-32, 1993

[8] D. Vlasic, H. Pfister, S. Molinov, R. Grzeszczuk and W.
Matusik, “Opacity Light Fields: Interactive Rendering of
Surface Light Fields with View-dependent Opacity”, Proc.
Of 2003 symposium on Interactive 3D graphics, pp. 65-74,
2003.

	Index
	WIAMIS 2004 Home Page
	Conference Info
	Chairman Message
	Program Committee
	Reviewing Committee
	Sponsors
	Welcome to Lisboa
	Workshop Venue
	Social Activities
	On-Site Activities
	Journal Special Issues

	Sessions
	Wednesday 21.4.2004
	WedAmPS1-Invited: Advances on Facial Recognition
	WedAmOR1-Oral 1 - Facial Analysis and Recognition
	WedAmPO1-Poster 1 - Facial Analysis Tools
	WedAmPO2-Poster 2 - Error Resilience and Rate Control
	WedPmOR1-Oral 2 - Watermarking
	WedPmSS1-Panel: Facial Analysis: Tools and Applications
	WedPmPO1-Poster 3 - Data Hiding and Protection
	WedPmPO2-Poster 4 - Analysis for Surveillance

	Thursday 22.4.2004
	ThuAmPS1-Invited: Analysis for Content Protection
	ThuAmOR1-Oral 3 - Segmentation
	ThuAmSS1-Semantic-based Multimedia Analysis and Access ...
	ThuAmPO1-Poster 5 - Indexing and Retrieval
	ThuAmPO2-Poster 6 - Quality Evaluation
	ThuAmSS2-Semantic-based Multimedia Analysis and Access ...
	ThuPmOR1-Oral 4 - Indexing and Retrieval
	ThuPmSS1-Panel: Segmentation and Indexing: Where are we ...
	ThuPmPO1-Poster 7 - Detection and Tracking
	ThuPmPO2-Poster 8 - Extraction, Structuring and Classif ...

	Friday 23.4.2004
	FriAmPS1-Invited: Recent Advances on Video Coding
	FriAmOR1-Oral 5 - Content Adaptation
	FriAmPO1-Poster 9 - Scalability, Transcoding and Transm ...
	FriAmPO2-Poster 10 - Image and Video Coding
	FriPmOR1-Oral 6 - Object Detection and Tracking
	FriPmSS1-Panel: Image and Video Analysis: Trends and Ch ...
	FriPmPO1-Poster 11 - Applications
	FriPmPO2-Poster 12 - Personalization

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Sessions
	Papers by Topics

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcoding and tr ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Multimedia analysis hardware and middleware

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Current paper
	Presentation session
	Abstract
	Authors
	Karsten Müller
	Aljoscha Smolic
	Birgit Kaspar
	Philipp Merkle
	Thobias Rein
	Peter Eisert
	Thomas Wiegand

