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ABSTRACT

This paper deals with video and image segmentation using
region based active contours. We consider the problem of
segmentation through the minimization of a new criterion
based on information theory. We first propose to derive a
general criterion based on the probability density function
using the notion of shape gradient. This general derivation
is then applied to criterions based on information theory,
such as the entropy or the joint entropy for the segmentation
of sequences of images. We present experimental results on
multimodal images showing the accuracy of the proposed
method.

1. INTRODUCTION

In many image processing problems such as segmentation,
tracking or classification, the purpose is to extract image
regions that minimize an energy. In this paper, we propose
to minimize a criterion based on the entropy for multimodal
images and videos segmentation.

The issue is to find a regionΩ with homogeneous fea-
tures, such as mean, variance, texture...This region is char-
acterized by a minimum of an energy criterion including
region and boundary features. The region features are mod-
eled as a combination of region integrals of a descriptor
k(x, Ω) that depends on this regionΩ and on its features.

We noteJ(Ω) the criterion:

J(Ω) =

∫
Ω

k(x, Ω)dx (1)

We use the shape gradient method presented in [1] to derive
this criterion and obtain a forceF that we apply to an active
contour. Given an initial contourΓ0, the active contours
method consists in applying a force to this initial contour
such that it evolves towards the object of interest. The active

contour is modeled by a parametric curveΓ(s, τ) wheres is
its arc-length andτ an evolution parameter. It evolves using
the following Partial Differential Equation:

∂Γ(s, τ)

∂τ
= v = FN with Γ(τ = 0) = Γ0 (2)

wherev is the velocity vector ofΓ(s, τ), F its amplitude
along the unit inward normalN of the curve.

Active contours were originally boundary methods and
have been introduced in [2], and geodesic active contours in
[3]. The energy includes region and boundary functionals,
like in [4, 5].

First, we present the problem of optimization of region
and boundary functionals with active contours, then the gen-
eral framework of shape derivation. In section 3, we define
a criterion based on the entropy and use derivation tools to
obtain the equation of evolution of the active contour. We
extend the framework to joint entropy and mutual informa-
tion. Then we show some experimental results in sec.4.

2. PROBLEM STATEMENT AND GENERAL
FRAMEWORK

2.1. Problem statement

We note:

• q(I(x),Ω) the probability to have the intensityI(x)
with x in the regionΩ

• ϕ a function:R+ → R+ of this probability which
may be relative to the entropy, or the conditional en-
tropy

Let us define a general criterion.

J(Ω) =
∫
Ω

ϕ(q(I(x),Ω))dx (3)



We compute the derivative of this criterion by using the
notion of shape gradient proposed in [6]. From this deriva-
tive, we obtain the velocity of the curve evolution.

2.2. Derivation tool

In this section we use the general criterionJ(Ω) defined in
(3). The probability density function of the intensity of the
image in the regionΩ is estimated using the Parzen window
method:

q(I(x), Ω) =
1

| Ω |

∫
Ω

K(I(x) − I(x̂))dx̂ (4)

where K is the gaussian kernel of this estimation with
0-mean andσ-variance

We can not compute a direct derivation of this criterion
with respect toΩ. A solution is to use the shape gradient
method using a dynamic scheme where the regionΩ be-
comes continuously dependent on an evolution parameter
τ . The criterion is then defined as follows:

J(Ω(τ)) =

∫
Ω(τ)

ϕ
(
q(I(x), Ω(τ))

)
dx (5)

To simplify the notations, let us denoteΩ = Ω(τ).
The contour evolution equation is obtained by deriving this
criterion with respect toτ in an Eulerian framework.
The Eulerian derivativedJr of this criterion in the direction
V represents the variation ofJ(Ω(τ)) due to both the defor-
mation of integration domainΩ(τ) in the direction ofV and
the variation ofϕ (see [6, 7] for details). This derivative is:

dJr(Ω, V) =

∫
Ω

ϕ′
r(q(I(x), Ω), V)dx (6)

−
∫

∂Ω

ϕ(q(I(s), Ω))(V · N)ds

whereϕ′
r(q(I(x),Ω), V) is the domain derivative ofϕ in

the directionV andN is the unit inward normal of the curve.
The first term is the integral of the domain derivative

of ϕ. It comes from the dependence of the descriptorϕ
upon the regionΩ, whereas the second term comes from
the evolution of the regionΩ itself.

The domain derivative ofϕ is the following:

ϕ′
r(q(I(x), Ω), V) =

1

| Ω |

∫
∂Ω

ϕ′(q(I(x), Ω)[q(I(x), Ω)

− K(I(x) − I(s))](V · N)ds (7)

whereϕ′(q) is the derivative ofϕ with respect toq.

From this Eulerian derivative, we deduce the velocity
vector of the active contour that will make it evolve as fast as
possible towards a minimum of the functional. According

to the Cauchy-Schwartz inequality, the fastest decrease of
dJr(Ω) is obtained with the following equation:

∂Γ
∂τ

= v =
(
ϕ(q(I(x),Ω)) + A(x,Ω)

)
N (8)

whereA(x, Ω) is a term coming from the dependence of
the descriptors with the region and will be detailed in the
following examples.

3. THE ENTROPY

In this section we present a functional based on information
theory: the entropy.

3.1. Minimization of entropy

Let us consider the general functional introduced in section
2. For the entropy we use the following functionϕ:

ϕ(q(I(x), Ω)) = −q(I(x), Ω) ln q(I(x), Ω) (9)

The functional we want to minimize is then given by the
following expression:

H(Ω) =
∫

Ω

−q(I(x),Ω) ln q(I(x),Ω)dx (10)

We derive this criterion by using the method proposed
in [6] and we obtain the Eulerian derivative in the direction
V.

Let us first compute the domain derivativeϕ′
r whose ex-

pression is given by equation (7).
We have:

ϕ′(q(I(x), Ω)) = − ln q(I(x), Ω) − 1

Hence, we obtain:

ϕ′
r(q(I(x), Ω), V) =

1

| Ω |

∫
∂Ω

[− ln q(I(x), Ω) − 1].

[q(I(x), Ω) − K(I(x) − I(s))](V · N)ds (11)

With this domain derivative, we can write the first term of
the Eulerian derivative:∫

Ω

ϕ′
r(q(I(x), Ω), V)dx =

∫
Ω

1

| Ω |

∫
∂Ω

[− ln q(I(x), Ω)− 1].

[q(I(x), Ω) − K(I(x) − I(s))](V · N)ds dx

We switch the order of integration and we obtain the follow-
ing formulation:∫

Ω

ϕ′
r(q(I(x), Ω), V)dx =

∫
∂Ω

( 1

| Ω | [H(Ω) − 1

+

∫
Ω

K(I(x) − I(s)) ln q(I(x), Ω)dx] + q(I(s), Ω)
)
(V · N)ds



Thus, the Eulerian derivative of the criterion is:

dHr(Ω, V) =

∫
∂Ω

[ 1

| Ω |

(
H(Ω) − 1

+

∫
Ω

K(I(x) − I(s)) ln q(I(x), Ω)dx
)

+ q(I(s), Ω)

+ q(I(x), Ω) ln q(I(x), Ω)
]
(V · N)ds

From which we deduce the following evolution equation:

∂Γ

∂τ
=

[
− q(I(x̂), Ω)(ln q(I(x̂), Ω) + 1) − 1

| Ω |

(
H(Ω)

− 1 +

∫
Ω

K(I(x) − I(x̂)) ln q(I(x), Ω)dx
)]

N (12)

In the experiments, we use a competition between the
background region and the object region and the criterion to
minimize is:

J(Ωin, Ωout, Γ) = H(Ωin) + H(Ωout) +

∫
Γ

λds (13)

whereλ is a regularization parameter.

3.2. Minimization of joint entropy

Let X andY denote two random variables with marginal
probability distributionsqX(x) andqY (y). qXY (x, y) is the
joint probability distribution. The joint entropy has the fol-
lowing definition:

H(X, Y ) = −
∫

ΩX

∫
ΩY

qXY (x, y) ln qXY (x, y) dx dy (14)

In the case of multimodal images, we compute the joint
entropy between two channels of the image. If we note
I(x) = (IX(x), IY (x)), the probability distributions are:

qX(x) = q(IX(x), Ω) ; qY (x) = q(IY (x), Ω)

qXY (x, y) = q(IX(x), IY (y), Ω) (15)

and the joint entropy is:

HXY (Ω)= −
∫

Ω

q(IX(x), IY (y), Ω) ln q(IX(x), IY (y), Ω)dx dy

Using the joint probability distributions instead of the prob-
ability distributions in equation(12), we obtain:

∂Γ

∂τ
=

[
− q(IX(x̂), IY (x̂), Ω)(ln q(IX(x̂), IY (x̂), Ω) + 1)

− 1

| Ω |

(
HXY (Ω) − 1 +

∫
Ω

KXY (IX(x)−IX(x̂), (16)

IY (x)−IY (x̂)). ln q(IX(x), IY (x), Ω)dx
)]

N

where

KXY (x, y) =
1

2πσ2
exp− 1

2σ2
(x y)(x y)T (17)

In the experiments we minimize the following criterion:

J(Ωin, Ωout, Γ) = HXY (Ωin) + HXY (Ωout) +

∫
Γ

λds (18)

3.3. Mutual information

Let H(X) andH(Y ) denote the entropy ofX andY re-
spectively, andH(X, Y ) their joint entropy.
The Mutual Information(MI) notedMI(X, Y ) or relative
entropy mesures the degree of dependence ofX andY by
measuring the Kullback-Leibler distance between the joint
distribution and the product of the distributions.MI can be
written like follows:

MI(X, Y ) = H(X) − H(X/Y ) (19)

Like in [8], we define the binary labelL determined
by the curveΓ as a mapping from the image domain to
{Rin, Rout}:

L(x) =

{
Rin if x ∈ Ωin

Rout if x ∈ Ωout

We consider the mutual information between the label and
the image intensity:

MI(I(X), L(X)) = H(I(X)) − H(I(X)|L(X)) (20)

with X a random variable uniformly distributed over the
image domain.

The mutual information is maximized ifRin = Ωin and
Rout = Ωout, ie if the segmentation is correct. The func-
tional to minimize is then given by:

J(Ωin, Ωout, Γ) = −MI(I(X), L(X)) +

∫
Γ

λds (21)

whereλ is a regularization parameter. See [9] for more de-
tails.

4. EXPERIMENTAL RESULTS

In these experiments, we use a parametric method to imple-
ment the evolution equation: smoothing B-splines. We use
this method instead of usual level-sets methods because it
is less time consuming (see [10]). Furthermore smoothing
B-spline approach combines a very low computational cost
and a global robustness to noisy data.
Regions of interest are homogeneous regions, like the face
on the sequenceErik. The color images are in theY UV
color space. For these experiments we use 2D-histograms
for a easier visualization. Thus we use the channelsY and
U and we ignore theV one. Indeed, for face segmenta-
tion, the channel V (the blue chrominance) doesn’t bring
any meaningful information. We use the criterion of joint
entropy with the channelsY andU . We quantify this his-
togram with an uniform step quantization, identical for the
two components and we estimate it with the Parzen method
with a parameterσ between 2 and 5.
We use the criterion(18) and the evolution equation(16).
Fig.(4) shows the evolution of the curve and the evolution
of the histogram of the object (region inside the curve).



5. CONCLUSION

In this paper we have presented a general framework based
on information theory for image segmentation using active
contours. We use a non-parametric and statistic method to
define the functionals we want to minimize. By deriving
these functionals using a gradient shape method, we obtain
the curve evolution. This general derivation is applied to de-
scriptors like the entropy and the joint entropy and we show
some experimental results on color images. Some other cri-

(a) Initial curve (b) Initial histogram of the object

(c) Iteration 100 (d) Iteration 100

(e) Iteration 300 (f) Iteration 300

(g) Final segmentation (h) Final histogram

Fig. 1. Evolution of segmentation and histograms with the
minimization of the joint entropy

terions are studied like mutual information, an information
measure which is very used for medical image registration
(see [11, 12]).
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