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Abstract

Texture characterisation problem is attempted us-
ing two-dimensional (2−D) autoregressive (AR) mod-
elling under the assumption that different textures can
be described by different sets of 2−D AR model coef-
ficients. The AR model coefficients are estimated us-
ing a proposed technique which relates the conventional
Yule-Walker system of equations with the Yule-Walker
system of equations in the third-order statistical do-
main through a constrained optimisation formulation
with equality constraints. The method is applied to
characterise textures in mammograms.

1 Introduction
Texture characterisation has been widely used in

different kinds of images including medical images
and SAR (synthetic aperture radar) images [1][2].
Many different methods have been used for texture
characterisation purposes. In this paper, the problem
is attempted by treating the image as the output of
two-dimensional (2 − D) autoregressive (AR) model,
therefore in order to characterise textures, we simply
estimate the AR model coefficients of the given
images or the area of interest.

Two of the most popular methods in the liter-
ature for estimating AR model coefficients are the
Yule-Walker system of equations (YW) and the
Yule-Walker system of equations in the third-order
statistical domain (YWT). The first method is able
to estimate AR model coefficients only when the
SNR (signal-to-noise ratio) is high, i.e. the external
Gaussian noise is small compared to the signal and
the variance of estimated AR model coefficients arisen
from a number of realisations is lower compared
to the later method. The YWT method employs
the third-order moments of the samples, therefore
the external Gaussian noise can be eliminated in
estimations, however, the variance of estimated
values is higher [6][7]. Our proposed method relates

the YWT method with the YW method through a
constrained optimisation formulation with equality
constraints. The conventional methods may be
found in Section 2 and the proposed method is
in Section 3 followed by the simulation results of
both synthetic images and mammograms in Section 4.

2 Preliminaries
2.1 Two-Dimensional Autoregressive

Model

Let us consider a digitised image x of size M × N .
Each pixel of x is characterised by its location [m,n]
and can be represented as x[m,n], where 1 ≤ m ≤ M ,
1 ≤ n ≤ N and x[m,n] is a positive intensity (gray
level) associated with it. A two-dimensional (2 − D)
autoregressive (AR) model is defined as [4]

x[m,n] = −

p1
∑

i=0

p2
∑

j=0

a[i, j]x[m−i, n−j]+w[m,n], (1)

where [i, j] 6= [0, 0], a[i, j] is the AR model coefficient,
w[m,n] is the input driving noise, x[m,n] is the out-
put and p1 × p2 is the order of the AR model.

The driving noise, w[m,n], is non-Gaussian and as-
sumed to be zero-mean, i.e., E{w[m,n]} = 0, where
E{·} is the expectation operation. The AR model co-
efficient a[0, 0] is assumed to be 1 for scaling purposes,
therefore we have [(p1 + 1)(p2 + 1)− 1] unknown coef-
ficients to solve.

An additional zero-mean Gaussian noise, v[m,n],
with variance equal to unity, is added onto the sys-
tem. Mathematically the new system can be written
as

y[m,n] = x[m,n] + v[m,n]. (2)

The signal-to-noise ratio (SNR) of the system is cal-
culated by

SNR = 10log10

σ2

x

σ2
v

dB (3)



where σ2

x is the variance of the signal and σ2

v is the
variance of the noise.

2.2 Yule-Walker System of Equations

The YW method for the quarter-plane (QP) model,
i.e., the region of support of AR model parameters is
in the quarter plane only, can be written in matrix
form as [4]

Ryya1
= h, (4)

where Ryy is a (p1 + 1)(p2 + 1) × (p1 + 1)(p2 + 1)
matrix of second-order moment samples and a

1
and h

are both (p1 + 1)(p2 + 1) × 1 vectors.
More explicitly, (4) can be rewritten as in (5) on the

next page. In (5), a[i] = [a[i, 0], a[i, 1], · · · , a[i, p2]]
T is

of dimension (p2 + 1) × 1, T denotes transpose,
h1 = [1, 0, · · · , 0]T is of dimension (p2 + 1) × 1,
0 = [0, 0, · · · , 0] is of dimension (p2 + 1) × 1, and
Ryy[i] =








ryy[i, 0] ryy[i,−1] · · · ryy[i,−p2]
ryy[i, 1] ryy[i, 0] · · · ryy[i,−(p2 − 1)]

...
...

. . .
...

ryy[i, p2] rxx[i, p2 − 1] · · · ryy[i, 0]









is of dimension (p2 + 1) × (p2 + 1).
The second-order moment sample ryy[i, j] is defined

as
ryy[i, j] = E{y[m,n]y[m + i, n + j]}. (6)

Since the input variance σ2

w is unknown, the first
equation in (5) may be eliminated. The coefficient
a[0, 0] is assumed to be 1, so we can move the first
column of the matrix of the remaining system to the
right-hand side of the system. Let us write the revised
system as

Ra = −r, (7)

where R is a (p1p2 + p1 + p2) × (p1p2 + p1 + p2)
matrix of second-order moment samples and a and r

are both (p1p2 + p1 + p2) × 1 vectors.

2.3 Yule-Walker System of Equations in
the Third-Order Statistical Domain

The YW method introduced in the previous sec-
tion is able to estimate the AR model coefficients only
when the system SNR is large [6]. When the SNR
is small, the estimation results are influenced by the
large Gaussian noise. In the literature, the YWT
method has been used to solve this problem. The
equations may be written in matrix form as [6][7]

Cyya1
= −cyy. (8)

More explicitly, (8) can be rewritten as in (9) on
the next page. In (9) a[i] = [a[i, 0], a[i, 1], · · · , a[i, p2]]

T

is of dimension (p2 + 1) × 1, h1 = [1, 0, · · · , 0]T is of
dimension (p2+1)×1, 0 = [0, 0, · · · , 0]T is of dimension
(p2 +1)× 1 and the matrix C

3y [i] of dimensions (p2 +
1) × (p2 + 1) is shown on the next page.

The third-order moment sample for a zero-mean
process is estimated by [6]
C3y([i1, j1], [i2, j2]) =

E{y[m,n]y[m + i1, n + j1]y[m + i2, n + j2]} (10)

The skewness of the driving input is also unknown,
therefore we can further simplify the equations apply-
ing the same rule mentioned at the end of last section.
The equations can now be written as

Ca = −c (11)

for model order p1 × p2, where C is a
(p1p2 + p1 + p2) × (p1p2 + p1 + p2) matrix of
third-order moment samples and a and c are both
(p1p2 + p1 + p2) × 1 vectors.

3 Proposed Method
The proposed method relates (11) to (7) through

a constrained optimisation formulation, which can be
written mathematically as

minimise

W−1
∑

i=1

(Ria + ri)
2,

subject to

Ca = −c (12)

where W is the number of rows in matrix R in (7),
Ri is the ith row of the matrix R in (7),
a is the vector of unknown AR model parameters,
ri is the i-th element of the vector r in (7), and
C and c are derived in (11).

(12) is solved using sequential quadratic program-
ming (SQP) [3].

4 Simulation Results
4.1 Synthetic Images

Synthetic images generated from the following
1 × 1 stable and separable AR model are used for
simulation purposes. The 2 − D stable AR model
coefficients are obtained from a = aT

1
× b

1
, where a

1

and b
1

are both stable 1 − D AR model coefficients.
x[m,n] = −0.25x[m − 1, n − 1] − 0.5x[m − 1, n] −
0.5x[m,n − 1] + w[m,n]
The driving noise, w[m,n], is zero-mean
exponentially-distributed. Additional Gaussian











Ryy[0] Ryy[−1] · · · Ryy[−p1]
Ryy[1] Ryy[0] · · · Ryy[−(p1 − 1)]

...
...

. . .
...

Ryy[p1] Ryy[p1 − 1] · · · Ryy[0]

















a [0]
a [1]

...
a [p1]









=









σ2

wh1

0
...
0









(5)











C
3y[0] C

3y[−1] · · · C
3y[−p1]

C
3y[1] C

3y[0] · · · C
3y[−(p1 − 1)]

...
...

. . .
...

C
3y[p1] C

3y[p1 − 1] · · · C
3y[0]



















a[0]
a[1]

...
a[p1]









= γw









h1

0
...
0









(9)

C
3y[i] =









C3y([i, 0], [i, 0]) C3y([i,−1], [i,−1]) · · · C3y([i,−p2], [i,−p2])
C3y([i, 1], [i, 1]) C3y([i, 0], [i, 0]) · · · C3y([i,−(p2 − 1)], [i,−(p2 − 1)])

...
...

. . .
...

C3y([i, p2], [i, p2]) C3y([i, p2 − 1], [i, p2 − 1]) · · · C3y([i, 0], [i, 0])









noise, v[m,n], with zero-mean, is added onto x[m,n]
to yield

y[m,n] = x[m,n] + v[m,n].

The variance of v[m,n] is adjusted so that SNR is
equal to 5 dB for very noisy case and 30 dB for almost
noise-free case. Simulation results obtained from the
new method may be found in Table 1 for both SNR
equal to 5 dB and 30 dB. One hundred realisations
were taken, so that the variances could be calculated.

Para- Real Estimated Variance Estimated Variance

meter Value value (10−3) value (10−3)

SNR 5 dB 30 dB

a[0, 1] 0.5 0.5024 0.1898 0.4998 0.06697

a[1, 0] 0.5 0.5021 0.3525 0.4997 0.04339

a[1, 1] 0.25 0.2553 0.7589 0.2498 0.1191

Relative Error 0.03470 0.01464

Table 1: The results arisen from constrained optimi-
sation with equality constraints for 2 − D AR model
coefficient estimation.

4.2 Mammography

Mammograms play an important role in breast
cancer screening. We pay attention to the changes in
AR model coefficients of the problematic area and its
neighbourhood.

For each mammogram with mass, we form a
neighbourhood around the square area of where the
mass is and then estimate the AR model coefficients
of each block in the neighbourhood. The order of the
AR model is assumed to be 1 × 1.

An example of mammograms with a malignant
mass taken here is the mdb023 from the database

[5], which is shown in Figure 2 with the mass
marked. The background tissue of this mammo-
gram is fatty-glandular and the malignant mass is
centred at the position [538, 681] with the radius
29 (pixels). The origin of the co-ordinate system is
the bottom-left corner. We estimate the AR model
coefficients of each block in neighbourhood as shown
in Figure 1 and calculate the“degree of symmetry”
by a[1, 1] − a[0, 1] ∗ a[1, 0]. The estimated AR model
coefficients for Block 1, 2 and 3 can be found in Table
2, for Block 4, P and 5 in Table 3 and for Block 6, 7
and 8 in Table 4.

Figure 1: The mass and its neighbourhood.

5 Summary and Conclusions

A method is proposed using both the conventional
Yule-Walker system of equations and the Yule-Walker



Figure 2: The mammogram with the mass marked:
mdb023

B1 B2 B3

a[0, 1] -0.9104 7.0822 2.4479
a[1, 0] -0.9643 -0.3474 -1.3119
a[1, 1] 0.8759 -7.7154 -2.3145

Degree of 0.0020 5.2553 -1.0768
symmetry

Table 2: The AR model coefficients for blocks 1-3 of
pixels in mdb23.

B4 BP B5

a[0, 1] -1.3301 -1.0403 -1.1647
a[1, 0] -0.9151 -1.0291 -0.7296
a[1, 1] 1.2453 1.0696 0.8944

Degree of -0.0282 0.0010 -0.0446
symmetry

Table 3: The AR model coefficients for blocks 4, P
and 5 of pixels in mdb23.

system of equations in the third-order statistical do-
main through a constrained optimisation formulation.
The method is able to estimate 2 − D AR model co-
efficients in both low and high SNR systems. Fur-
ther simulations showed that the variances of the esti-
mated coefficients arisen from the proposed method is
lower than from the Yule-Walker system of equations
in the third-order statistical domain. The method is
also applied to characterise textures in the tumour

B6 B7 B8

a[0, 1] -0.1890 -0.8935 0.6717
a[1, 0] -0.8346 -1.1864 -1.0080
a[1, 1] 0.0255 1.0800 -0.6707

Degree of 0.1322 -0.0199 -0.0016
symmetry

Table 4: The AR model coefficients for blocks 6-8 of
pixels in mdb23.

and its neighbourhood in mammograms. The prob-
lematic area can be presented by a set of symmetri-
cal AR model coefficients, as the degree of symmetry
is much lower in the problematic block compared to
other blocks.
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