
OCTREE VOXEL MODELING WITH MULTI-VIEW TEXTURING  
 

Karsten Müller, Aljoscha Smolic, Birgit Kaspar, Philipp Merkle, Tobias Rein, Peter Eisert, 
and Thomas Wiegand 

 
Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institut  

Image Processing Department 
Einsteinufer 37, 10587 Berlin, Germany 

{kmueller/smolic/kaspar/merkle/rein/eisert/wiegand}@hhi.de 
 

ABSTRACT 
 
The reconstruction of 3D models of real world scenes and 
objects and photo-realistic rendering in interactive free 
viewpoint applications is a challenging task combining 
image processing, computer vision and graphics. In this 
paper, we present a reconstruction pipeline for cultural 
heritage applications. Starting with a number of photo-
graphs of a scene, calibration information is obtained and 
a 3D model is reconstructed using a hierarchical voxel 
approach. This octree reconstruction generates a 3D ge-
ometry that is further transformed into a wire frame model 
for smoothing and surface primitive reduction. Finally, 
texture mapping in the form of view-dependent multi-
texture rendering, where original views at original camera 
positions and automatic texture interpolation at intermedi-
ate positions during scene navigation is shown. Further-
more, the algorithm was adapted to exploit automatic 
graphics card processing and interpolation. 
 

1. INTRODUCTION 
 
Multi-view scene and object reconstruction have become 
widespread in recent years, due to a number of approaches 
that were introduced recently. Among the 3D geometry 
reconstruction methods are shape-from-silhouette voxel 
approaches, which operate on a set of mask information 
from all views and a set of provided calibration data [4]. 
To limit the complexity of voxel reconstruction, a hierar-
chical approach was introduced, namely octree recon-
struction [7], that is also exploited for the cultural heritage 
reconstruction, introduced in this paper. For texturing or 
coloring of 3D objects, two main classes of algorithms 
have been developed. The first class contains approaches 
for voxel-wise coloring [6], while the second class deals 
with texture mapping. Some of the texture mapping algo-
rithms also make use of hardware acceleration and have 
been specifically developed to fit the graphics-processing 
unit’s functionalities including view-dependent multi-
texturing [3], Light-field mapping [2], or Lumigraph map-
ping [1]. However, voxel coloring is only suited for a 
high-resolution voxel model, since each voxel can only be 

associated with one constant color value. For the chosen 
hierarchical octree approach, such coloring is rather un-
suitable. In this case, some of the voxels might be quite 
large, depending on the object surface. Moreover, a con-
stant coloring causes the object surface to look identical 
no matter which viewpoint is selected. Different lighting, 
reflections, or even varying colors from different view-
points are not well represented. Moreover, due to the lim-
ited voxel resolution, fine color details on the surface can-
not be reproduced. Therefore, we suggest texture mapping 
onto voxels, as it projects a texture patch onto the surface 
with the texture patch size adapted to the voxel size. Often 
the reconstructed voxel object is transformed into a wire 
frame to obtain a smoother surface approximation of the 
real object and at the same time to reduce the complexity. 
However, applying a constant color to a triangle in the 
mesh does not give the desired result and texture mapping 
is an applicable algorithm for the representation of fine 
structures with coarse polygonal meshes. Therefore, we 
present a reconstruction pipeline that uses a number of 
photographs of a scene, constructs a 3D geometry as hier-
archical octree voxel model, and applies a multi-view tex-
turing to exploit automatic graphics card processing and 
interpolation. 
 

2. CAMERA SETUP AND CALIBRATION 
 

 
Fig. 1: Camera Positions along the temple 
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The modeling starts with the calibration of original cam-
era images. Fig. 1 shows the camera positions and direc-
tions (as small red arrows) that were used to capture im-
ages of a temple in Angkor Vat (Cambodia) that we want 
to reconstruct in 3D. From this, a projection of significant 
points into 3D space and resulting calibration and projec-
tion information is generated using available calibration 
software, see Fig. 2. 
 

 
Fig. 2: Projected points in 3D-space 

 
3. OCTREE-VOXEL-GENERATION  

 
After obtaining the projection information, 3D geometry 
reconstruction starts by applying an octree voxel ap-
proach. The algorithm operates on the silhouette informa-
tion of all views. A user-assisted segmentation is used to 
obtain this silhouette information for each view. For 3D 
modeling, an initial cube is placed into the 3D scene such 
that its projection into all silhouette views covers the inte-
rior area completely. In the next stage, the cube is divided 
into eight equivalent cubes one in each octant. Each sub-
cube is further projected into each view and the following 
rules are applied: 
1. A cube that is completely inside the silhouettes of all 

views, is not subdivided further, i.e. it is completely 
inside the object to be reconstructed 

2. A cube that is completely outside of at least one sil-
houette is omitted. 

3. All other cubes are further subdivided. 
 

Subdivision is applied, until a certain minimum voxel size 
is achieved. Fig. 3 shows the different voxel resolutions 
resulting from the subdivision process, starting with a 
coarse voxel resolution. Here only remaining voxels of a 
certain stage are shown, that are also part of the final 
model. 

 

 
Fig. 3: Different voxel resolutions during the octree 
generation process 

Finally, the octree model is obtained, including all resolu-
tion stages, as shown in Fig. 4. For better visualization, 
the coarsest voxel are drawn in opaque red, while all other 
resolution stages are drawn in transparent white. 

 
Fig. 4: Reconstructed octree model, coarsest voxel 
resolution red, finer resolutions transparent 

 
4. SURFACE SMOOTHING 

 
Although the voxel geometry is already suited for textur-
ing, visible artifacts would occur, if texture mapping is 
applied onto the model at this stage. Therefore, the voxel 
model is transformed into an irregular triangular wire 
frame model that better approximates the original 3D ob-
ject and provides surface smoothing at the same time. A 
general approach for voxel model transformation is the 
marching cubes algorithm [5], where all cubes be-longing 
to the object surface are triangulated. However, to obtain 
a better approximation, also neighboring cubes need to be 
considered, such that larger triangles can be formed in 
surface areas, which are relatively planar. Fig. 5 shows a 



wire frame transformation example, followed by a 
smoothing operation. 

 

 
Fig. 5: Transformation of a voxel model into smoothed 
wireframe 

The algorithm begins with the triangulation of all cube 
faces that belong to the object surface. These faces are 
first detected applying a marching cubes algorithm. The 
result is a very dense wire frame, which is smoothed and 
reduced, using automatic DirectX functionality for mesh 
processing. To combine also perpendicular faces, result-
ing from adjacent cube sides, normal vector comparison 
needs to be neglected for the mesh simplification routines. 
 

5. MULTI-VIEW TEXTURING  
 
Finally, the 3D geometry needs to be textured. As already 
mentioned, a constant coloring of geometric primitives, 
i.e. voxel or triangle, is not suited for good viewing qual-
ity, as the triangles are rather large and constant coloring 
does render individual aspects from different views. 
Therefore, a specific form of multi texturing is applied, 
that guarantees relatively constant lighting conditions 
when navigating through the scene and shows original 
views, if the appropriate viewing direction is reached dur-
ing navigation. In general, texture interpolation is 
achieved by weighting the available textures. These 
weights are usually obtained by taking the dot product of 
view vector and surface normal vector. For an untextured 
model, this weighting is shown in Fig. 5 bottom. Each 
triangle of the surface shows a different lighting, accord-

ing to its normal vector direction. Unfortunately, the tri-
angular surface structure is clearly visible not only for the 
untextured but also for the textured model. Therefore, we 
use an approach, where all surface triangles are illumi-
nated equally for a specific view. Instead of using the in-
dividual normal vectors of each triangle separately, a 
common vector is used for all triangles for a constant tex-
ture weight for texture mapping. This common vector 
equals the camera vector of that view, since we want to 
have maximum weighting, if the 3D scene is seen from the 
associated original camera viewpoint. Note that although 
constant illumination is now achieved for one texture, all 
other textures have their own texture weight. This results 
in a texture blending behavior, where textures are blended 
together, considering their original camera direction. An 
example of the textured temple model is shown in Fig. 6, 
where an intermediate view was selected. 

 
Fig. 6: Intermediate view of the textured temple model 

For a more detailed reconstruction example, the temple 
model is shown in detail from two original and one inter-
mediate viewpoint in Fig. 7. 

  

  
Fig. 7: Model from original viewpoints (top), interpo-
lated and corresponding view at that position (bottom) 



Fig. 7 top shows two original viewpoints of the temple 
model and Fig. 7 bottom-left an intermediate view posi-
tion. Furthermore, the original image at that intermediate 
position is also shown in Fig. 7 bottom-right. 
For the texture interpolation, it is necessary to analyze the 
camera vectors w.r.t. their directions. Consider different 
textures with their camera vectors Ci and viewing direc-
tion v. If texture weights would be calculated for each 
view independently, e.g. as cosθ with θ being the angle 
between v and Ci, lighting varies considerably during 
scene navigation. Thus an approach similar to unstruc-
tured lumigraph rendering was taken from [8] and applied 
as shown in Fig. 8. 
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Fig. 8: Unstructured Lumigraph Rendering [8]: 
Calculate all cosθθθθ between viewing direction v and 
camera vectors Ci  

First, cosines are calculated as already described. How-
ever, relative weighting functions are calculated as fol-
lows. 

 






=

≠
−=

1cos,_

1cos,
cos1

cos

i

i
i

i

i
MaxFloat

w
θ

θ
θ

θ
 (1) 

This function provides a weight that reaches infinity, if 
viewing direction and camera vector are parallel and 
drops to 0, if both directions are perpendicular. For angles 
larger than 90°, weights are assumed to be 0, since back 
face clipping is provided. After calculating all relative 
weights wi, absolute weights ai are obtained by normaliz-
ing them as follows. 
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This approach results in absolute weights that guarantee 
constant lighting during rendering and smooth interpola-
tion. Moreover, the original texture is shown when an 
original camera position is reached. The last condition 
results from the relative weights being nearly infinite at 
these positions. Due to the normalization, this weight is 
finally divided by the sum of all weights, which causes an 
absolute weight ai of one, while all other absolute weights 

are neglected. Rendering is finally carried out, using the 
texture weights for the associated textures and applying 
view-dependent multi-texturing as multistage blending. 
 

6. CONCLUSIONS 
 
In this paper, we have shown a 3D reconstruction pipeline 
from a number of camera images. The images are used to 
extract calibration information for building a hierarchical 
octree voxel model. For surface smoothing and surface 
primitive reduction, a transformation step for obtaining a 
triangular wire frame model is applied. In the last step, 
texture mapping is carried out in the form of multi-
texturing using adaptively calculated texture weights to 
provide constant lighting when navigating through the 
scene. Thus, a 3D model is built using only a limited sub-
set of views for texturing and automatically interpolated 
remaining intermediate views. Currently, investigations 
about reconstruction quality are carried out, if different 
numbers of input textures are used. Furthermore, we also 
work on 3D geometry extraction with multiple video tex-
tures, where a wireframe is required for each time in-
stance. 
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