
A NOVEL MULTIMEDIA RETRIEVAL TECHNIQUE: PROGRESSIVE QUERY
(WHY WAIT?)

Serkan Kiranyaz and Moncef Gabbouj

Institute of Signal Processing, Tampere University of Technology, Tampere, Finland

serkan@cs.tut.fi, moncef.gabbouj@tut.fi

ABSTRACT

One of the challenges in the development of content-based
multimedia indexing and retrieval application is to achieve an
efficient retrieval scheme. The developers and users who are
accustomed to making queries and thus retrieving any multimedia
item from a large scale database can be frustrated by the long query
times and memory and minimum system requirements. This paper
presents a novel retrieval technique, which is designed to bring an
effective solution especially for queries on large-scale multimedia
databases and furthermore to provide instantaneous query retrievals
along with the ongoing query process. In this way it achieves a
series of sub-query results that will finally be converging to the full-
scale search retrieval in a faster and significantly lower memory
with no minimum system requirements. Experimental progressive
query retrieval results show that the intermediate sub-query retrieval
results might achieve such a retrieval performance that requires no
further query processing time.

1. INTRODUCTION

There are several content-based multimedia indexing and retrieval
systems such as MUVIS system [1], [7], Photobook, VisualSeek,
Virage, and VideoQ [2],[3],[4],[5], some of which are designed to
bring a framework structure for handling and especially the retrieval
of the multimedia items such as digital images, audio and video
clips. The most common retrieval scheme is query-by-example
(QBE) and the query is usually performed via an exhaustive search
over the entire database due to lack of an efficient indexing scheme.
The indexing efficiency is especially reduced if the system supports
several aural and visual features along with the user interaction
options such as feature enabling and weighting set-up during the
retrieval. The basic QBE operation works as follows: using the
available aural or visual features (or both) of the queried multimedia
item (i.e. an image or video clip) and all the database items, the
similarity distances are calculated and then merged to obtain a
unique similarity distance per database item. Sorting according to
the similarity distances over entire database yields the query result.
 There are several drawbacks of such QBE scenario: First of
all the user has to wait till all the similarity measures are calculated
and all the database items are sorted accordingly. Naturally this
might take a significant time if the database size is big and the
database contains a rich set of aural and visual features, which
might further reduce the efficiency on the indexing process. In
addition to such drawbacks any abrupt stopping during the query

process will cause total loss of retrieval information and essentially
nothing can be saved out of query operation so far performed. In
order to speed up the query process it is a common retrieval
application design to hold all the features of all the multimedia items
of the database into the system memory first and then perform the
calculations. Therefore, the increase in the database size or its feature
sets will not only (proportionally) increase the query time (the time
needed for completing a query) but it will also increase the system
memory requirement.
 In order to eliminate such drawbacks and provide a faster
query scheme, we develop a novel retrieval scheme, the Progressive
Query (PQ), which is implemented under MUVIS system to provide
a solid basis and to test the performance of the technique. As its
name implies PQ provides the query results along with the query
process and lets the user browse around the queries obtained and
stops the ongoing query in case the results obtained so far are
satisfactory and hence no further time should unnecessarily be
wasted. An illustration of PQ process is shown in Figure 1. It is an
expected fact that PQ and a normal query will converge to the same
(final) retrieval results at the end but even PQ will then perform
overall query process faster (within a less total query time) than the
normal query. Since PQ provides a series of sub-query results, each
of which belongs to a smaller sub-set within the database, the chance
of retrieving the relevant database items that would not be retrieved
otherwise via a normal query, can be increased. Approvingly some
experimental results show that it is quite probable to achieve even
better retrieval performance within an intermediate sub-query than
the final query state.
 The rest of this paper is organized as follows: in section 2 we
introduce the generic PQ design philosophy and implementation
details. Section 3 presents the experimental results and some example
demonstrations. Finally conclusions are given in section 4.

2. PROGRESSIVE QUERY OVERVIEW

Basically PQ performs over a series of sub-queries. A sub-query is a
fractional query process that is performed over a sub-set of database
items. The items within a sub-set can be chosen by any convenient
manner such as randomly or sequentially but the size of each sub-set
should be chosen via a suitable (to human perception) unit such as
time (period). The other alternative is to fix the size of each sub-set
to a pre-defined value by the user. However, this brings the problem
of uncertainty since the user cannot know how much time a sub-
query will take beforehand. The sub-query time will vary due to the
number of features present in the database and the speed of the
computer where it is running. In order to avoid such uncertainties,

the proposed PQ scheme is designed over periodic sub-queries as
shown in Figure 1 with a user defined period value (t). pT=

Sub-Query
Fusion

Sub-Query
Fusion

Periodic
Sub-Query

Results

t 2t 3t 4t

Progressive
Sub-Query

Result

time

Figure 1: Progressive Query.

2.1. Sub-Query Fusion Operation

The overall PQ operation is achieved over progressive sub-queries
(PSQ). One can state that PQ is a (periodic) series of PSQ results.
Once a PSQ is realized it is rendered on the screen and kept intact
along with the lifetime of the ongoing PQ so that the user can access
it at any time. The first PSQ is the first periodic sub-query
performed. After the first PSQ, the rest of the PSQs are obtained by
a fusion operation between the current periodic sub-query and the
previous PSQ. The fusion operation is a process of fusing two of the
sorted sub-query results to achieve one (fused) sub-query result.
Since both sub-query results are already sorted with respect to the
similarity distances of the items within the sub-sets, fusion can be
performed simply by comparing the consecutive items in each of the
sub-query lists. Let be the number of items in the first sub-set

and be the number of items in the second one. Then the fusion

operation will take similarity distance comparisons.

1n

1n +
2n

2n

2.2. Periodic Sub-Query Formation

In order to achieve periodic sub-queries we need to define some
additional sub-query compositions:
• Atomic Sub-Query: The smallest sub-set size on which a
sub-query is performed. Here we assume that atomic sub-query time
is not significant compared to periodic sub-query time. Atomic sub-
queries are the only sub-query types that have a fixed sub-set size

(). They are only used during first periodic query and they

are used in order to provide an initial sub-query rate (), that is the
time spent for the retrieval of a single database item, formulated as
follows:

ASQS

rt

0>= ASQ
ASQ

ASQ
r Nif

N
t

t (1)

where is the total time spent for atomic sub-query and

is the number of database items, which are involved (used)

in query operation. Note that

ASQt

ASQN

ASQASQ SN ≤≤0 . In case

0=ASQN

rt

, one or more atomic sub-queries have to be performed

until we get a valid value (i.e.). rt 0>ASQN

r

r

p

t
T

∑

pTt −<∑

∑
∑
FSQ

N

t
rt

• Fractional Sub-Query: This can be any sub-query performed
over a sub-set whose size is smaller or equal to the sub-set size of the
periodic sub-query. In other words a fractional sub-query time might
be less than or equal to a periodic sub-query time.
 As explained before periodic sub-queries are periodic over
time and a mechanism is needed to ensure this periodicity. This
mechanism works over atomic and fractional sub-queries; it performs
fusion operation over as many atomic and fractional sub-queries as
necessary. First it starts with an atomic sub-query to obtain a valid
sub-query rate and it keeps going with atomic queries until a valid

 value is obtained. Once a valid t value is obtained, then one or
more fractional sub-queries will be performed to complete the first

periodic sub-query. The size of the fractional query () can

then be estimated as:
FSQN

FSQN = (2)

and the fractional sub-query is performed within a sub-set of

items. Once the fractional sub-query is completed, the total time
(t) so far spent from the beginning of the operation till now is

compared with the required sub-query time period, T . If t

value is not within a close neighborhood of T (i.e.

p ∑
p

WT) then the operation continues with a new

fractional sub-query until the condition is met. For the new fractional

sub-query and for all the latter fractional sub-query operations
value is re-estimated (updated) from the former operations such as:

rt

FSQN

0>= ∑
FSQ

FSQ
FSQ

Nif (3)

The flowchart of the formation of a periodic sub-query is shown in
Figure 2.

2.3. PQ versus Normal Query

Along with the ongoing PQ operation periodic sub-query results are
used to obtain PSQ results. The first PSQ is equal to the first periodic
sub-query. After that when a new periodic sub-query is performed
then a new PSQ can be formed by fusing the current periodic sub-
query with the last PSQ as shown in Figure 1. As mentioned before
PQ is nothing but the time series of PSQ retrieval results.

Normal query (NQ) is the most basic approach in multimedia
retrieval. It is performed over the entire database, loads and uses all
the features available, calculates the similarity distance of each
database item and ranks them. The final result is therefore the sorted
array of database items, which represents the query retrieval with
respect to their similarity to the queried multimedia item.

PQ and NQ eventually converge to the same retrieval result.
Also in the abovementioned scenarios they are both designed to
perform exhaustive search over the entire database within MUVIS.
However PQ have several advantages over NQ in the following
aspects:

• Overall Retrieval Time (Query Speed): There are three
major processes in NQ: Loading feature vectors to the system
memory, calculating the similarity distances and sorting the
database items according to their similarity distances. The first two
processes will spend the same time within PQ operation but the
sorting will be faster due to the following fact: Let n be the number
of database items in the database. If, for example, Quick Sort is
applied, then the number of comparisons will be O() on

average and O() in the worst case. Assume that we only perform
PQ in two PSQ series: Let be the number of items in the first

sub-set and be the number of items in the second one where

. In both average and worst-case scenario:

nn log
2n

2

2

1n

2

n

2n1nn +=
2

).()log()log()log(
)()()()(

2211

21

caseavgnnOnnOnnO
caseworstnOnOnO

<+
<+ (4)

So PQ will apply a faster sorting algorithm especially if the worst-
case scenario is considered. It can be shown by deduction that PQ
time will become significantly faster if the number of PSQ operation

is getting bigger (i.e. with smaller sub-set size or T value). p

Fusion

Atomic Sub-Query

No items in ASQ >0

Calculate size of
next Fractional

Sub-Query

Fractional
Sub-Query

t > Tp-Tw

Implemented
only at the

beginnning of
the first periodic

sub-query

Yes

No

Yes

No
Periodic Sub-

Query(Tp)
Stop

Figure 2: Flowchart of a Periodic Sub-Query.

PSQ No: 1 2 3 4 5 6 7 8 9 10 11 12

PSQ time (msec) 4997 5337 4927 5128 4507 4907 6198 4516 5067 4516 4997 3786

PQ time (msec) 4997 10334 15261 20389 24896 29803 36001 40517 45584 50100 55097 58883

Table 1: PSQ retrieval times for aural video retrieval shown in Figure 5

• System Memory Requirement: The memory requirement
is proportional to the database size and the number of features
present in a NQ operation. Due to the partitioning of the database
into sub-sets, PQ will reduce the memory requirement by the
number of PSQ operations performed. After each periodic sub-
query operation, the memory used for feature vectors in that sub-set
is no longer needed and can be used for the next periodic sub-query.
Therefore, sub-query will significantly be a faster solution on such
systems that due to the lack of memory capacity the virtual memory
has to be used for a NQ operation and PQ might even become the
only feasible query operation on such systems in which the system
memory is no longer capable of performing a NQ on a massive size
multimedia database. Figure 3 illustrates the memory usage of one
retrieval example that is shown in Figure 5 by a PQ and a NQ.

Figure 3: Memory usage for PQ and NQ.

• Query Accessibility: This is the major advantage that PQ
provides. Along with the ongoing process PQ allows intermediate
query results (PSQ results), which might sometimes show equal or
even better performance than the final (overall) retrieval result as
some typical examples given in Figure 4 and Figure 5. In this way
user might get the relevant retrieval results in a fracture of the time
that is needed in an NQ operation.

3. EXPERIMENTAL RESULTS

Several experiments are carried out to test the performance of PQ
with respect to NQ. Visual and aural queries have been performed on
both image and video databases. It is experimentally observed that
PQ’s overall operation is 0-15% faster than NQ retrievals (depending
on the number of PSQ series) if NQ memory requirement does not
exceed the system memory. If it exceeds then PQ can outperform NQ
by over 60%. Note that the relevant query retrievals may eventually
occur in an intermediate PSQ state as shown in Figure 5. It is also

observed that the PSQ retrieval times are within 5% of T value in

general. PSQ arrival times for the PQ example shown in Figure 5 are
given in Table 1. In this example PQ operation total time is 58.883
seconds where NQ takes 63.87 seconds. Note that the relevant query
results are already obtained within 28.8 seconds at the end of the 6.th
PSQ.

p

 In Figure 4, image retrieval via PQ using Canny Edge
Histogram feature is shown. There are 1400 binary images in this

database. We use T and PQ operation is completed

in three PSQ series (i.e. PQ #1, #2 and #3). This is one particular
example that an intermediate PSQ retrieval might yield a better
performance than the final PQ retrieval (that is same as the
retrieval result of NQ). In this example PQ #1 first 12-best
retrieval is obviously better than the ones in PQ #3 (the final).

sec2.0=p

 In Figure 5, video retrieval via aural PQ using MFCC (Mel-
Frequency Cepstral Coefficients [9]) as the audio features is
shown. There are 800 video clips in the database with a total

duration of over 36 hours. We use T and PQ

operation is completed in 12 PSQ series but only 3 PSQ retrievals
(i.e. PQ #1, #6 and #12) are shown. Note that PQ #6 and the latter
retrieval results till PQ #12 are identical, which means PQ
operation produces the final retrieval result in an earlier
(intermediate) PSQ retrieval.

sec5=p

 In Figure 6, another video retrieval via visual PQ using
several color (YUV, HSV, etc.), texture (GLCM [8]) and shape
(Canny Edge Histogram) features is shown. There are 181 video
clips in the database with a total duration of over 12 hours. We use

and PQ operation is completed in 4 PSQ series. This

is a particular example that the relevant query results are retrieved
in the last (final) PSQ.

sec3=pT

Figure 4: PQ image retrieval within 3 PSQs. Tp=0.2sec.

Figure 5: Aural video PQ retrieval within 12 PSQs (only
1.st, 6.th and 12.th are shown). Tp = 5sec.

Figure 6: Visual video PQ retrieval in 4 PSQs. Tp=3sec.

4. CONCLUSIONS

PQ is primarily developed to provide instantaneous and faster
retrievals along with the ongoing query process. By this way the user
can get an idea about the current status of the query, immediately
evaluates the available retrieval results and if satisfactory results are
already achieved, the user can even stop the query process without
wasting further time. We confirm this with a significant number of
experiments.
 Another important objective achieved with the proposed PQ
technique is that it avoids the implementation drawbacks, which NQ
encounters. This is especially the case if the current system
configuration does not match the minimum NQ requirements such as
memory and speed. Experimental results show that PQ is not
affected from such drawbacks and currently has no limitations
whatsoever the system configuration presents.

5. REFERENCES

[1] S. Kiranyaz, K. Caglar, O. Guldogan, and E. Karaoglu,
“MUVIS: A Multimedia Browsing, Indexing and Retrieval
Framework”, Proc. Third International Workshop on Content Based
Multimedia Indexing, CBMI 2003, Rennes, France, 22-24 September
2003.
[2] A. Pentland, R.W. Picard, S. Sclaroff, “Photobook: tools for
content based manipulation of image databases”, Proc SPIE (Storage
and Retrieval for Image and Video Databases II) 2185:34-37, 1994.
[3] J.R. Smith and Chang, “VisualSEEk: a fully automated content-
based image query system”, ACM Multimedia, Boston, Nov. 1996.
[4] Virage. URL:www.virage.com
[5] S.F. Chang, W. Chen, J. Meng, H. Sundaram and D. Zhong,
“VideoQ: An Automated Content Based Video Search System Using
Visual Cues”, Proc. ACM Mult., Seattle, 1997.
[6] ISO/IEC JTC1/SC29/WG11, “ Overview of the MPEG-7
Standard Version 5.0”, March 2001.
[7] F.Alaya Cheikh, B.Cramariuc, C.Reynaud, M.Quinghong,
B.Dragos-Adrian, B.Hnich, M.Gabbouj, P.Kerminen, T.Mäkinen and
H.Jaakkola, “MUVIS: a system for content-based indexing and
retrieval in large image databases", Proceedings of the SPIE/EI'99
Conference on Storage and Retrieval for Image and Video Databases
VII, Vol.3656, San Jose, California, 26-29 January 1999.
[8] M. Partio, B. Cramariuc, M. Gabbouj, A. Visa, “Rock Texture
Retrieval Using Gray Level Co-occurrence Matrix”, Proc. of 5th
Nordic Signal Processing Symposium, Oct. 2002.
[9] L. R. Rabiner and B. H. Juang, "Fundamental of Speech
Recognition", Prentice hall, 1993.

	Index
	WIAMIS 2004 Home Page
	Conference Info
	Chairman Message
	Program Committee
	Reviewing Committee
	Sponsors
	Welcome to Lisboa
	Workshop Venue
	Social Activities
	On-Site Activities
	Journal Special Issues

	Sessions
	Wednesday 21.4.2004
	WedAmPS1-Invited: Advances on Facial Recognition
	WedAmOR1-Oral 1 - Facial Analysis and Recognition
	WedAmPO1-Poster 1 - Facial Analysis Tools
	WedAmPO2-Poster 2 - Error Resilience and Rate Control
	WedPmOR1-Oral 2 - Watermarking
	WedPmSS1-Panel: Facial Analysis: Tools and Applications
	WedPmPO1-Poster 3 - Data Hiding and Protection
	WedPmPO2-Poster 4 - Analysis for Surveillance

	Thursday 22.4.2004
	ThuAmPS1-Invited: Analysis for Content Protection
	ThuAmOR1-Oral 3 - Segmentation
	ThuAmSS1-Semantic-based Multimedia Analysis and Access ...
	ThuAmPO1-Poster 5 - Indexing and Retrieval
	ThuAmPO2-Poster 6 - Quality Evaluation
	ThuAmSS2-Semantic-based Multimedia Analysis and Access ...
	ThuPmOR1-Oral 4 - Indexing and Retrieval
	ThuPmSS1-Panel: Segmentation and Indexing: Where are we ...
	ThuPmPO1-Poster 7 - Detection and Tracking
	ThuPmPO2-Poster 8 - Extraction, Structuring and Classif ...

	Friday 23.4.2004
	FriAmPS1-Invited: Recent Advances on Video Coding
	FriAmOR1-Oral 5 - Content Adaptation
	FriAmPO1-Poster 9 - Scalability, Transcoding and Transm ...
	FriAmPO2-Poster 10 - Image and Video Coding
	FriPmOR1-Oral 6 - Object Detection and Tracking
	FriPmSS1-Panel: Image and Video Analysis: Trends and Ch ...
	FriPmPO1-Poster 11 - Applications
	FriPmPO2-Poster 12 - Personalization

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Sessions
	Papers by Topics

	Topics
	Multimedia content analysis and understanding
	Content generation and manipulation
	Content-based browsing, indexing and retrieval of image ...
	2D/3D feature extraction
	Advanced descriptors and similarity metrics for audio a ...
	Relevance feedback and learning systems
	Supervised and unsupervised segmentation of objects in ...
	Identification and tracking of regions in scenes
	Voice/audio assisted video segmentation
	Analysis for coding efficiency and increased error resi ...
	Analysis and understanding tools for content adaptation
	Multimedia content adaptation tools, transcoding and tr ...
	Content summarization and personalization strategies
	Data hiding and copyright protection of multimedia cont ...
	Semantic mapping and ontologies
	Multimedia analysis for advanced applications
	Multimedia analysis for surveillance, broadcasting, mob ...
	Multimedia analysis hardware and middleware

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Current paper
	Presentation session
	Abstract
	Authors
	Serkan Kiranyaz
	Moncef Gabbouj

